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Cone-beam reconstruction by backprojection
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A new analytical method for tomographic image reconstruction from cone-beam projections acquired on the
source orbits lying on a cylinder is presented. By application of a weighted cone-beam backprojection, the
reconstruction problem is reduced to an image-restoration problem characterized by a shift-variant point-
spread function that is given analytically. Assuming that the source is relatively far from the imaged object,
a formula for an approximate shift-invariant inverse filter is derived; the filter is presented in the Fourier
domain. Results of numerical experiments with circular and helical orbits are considered. © 2000 Optical
Society of America [S0740-3232(00)01111-X]
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1. INTRODUCTION
Three-dimensional (3D) image reconstruction from cone-
beam projections is one of the latest generalizations of
computed tomography (CT). In medical CT, cone-beam
projections can be acquired by translating the patient
through a gantry comprising the x-ray source and a two-
dimensional (2D) detector, which captures a cone of
x-rays penetrating through the whole 3D field of view of
the system. This geometry provides certain advantages
over conventional collimator-based CT, increasing the
photon flux, shortening acquisition time, and making pos-
sible the geometrical magnification of projections. The
latter is also useful in imaging with radioisotopes, known
as single-photon-emission computed tomography
(SPECT), where the application of a cone-beam collimator
increases the total number of measured photons, improv-
ing both the spatial resolution and the quantitative char-
acteristics of images.1,2 Compared with slice-by-slice
scanning, cone-beam geometry facilitates data acquisition
but, at the same time, creates certain difficulties for solu-
tion of the corresponding image-reconstruction problem.
Mathematically speaking, the cone-beam reconstruction
problem is to find the object function f from the equation

g~s,u! 5 E
0

`

f~s 1 tu!dt (1)

that describes integration over the half-line with starting
point s and direction u P S2, where S2 stands for the
unit sphere in R3. Figure 1 depicts the geometry of im-
aging where vector s P R3 represents a single source lo-
cation on the orbit and f(r), r 5 (x, y, z) P R3 can be in-
terpreted as the 3D image. Function f vanishes outside
the unit ball:

f~r! 5 0 for uru . 1. (2)

One of the ways of inverting integral equation (1) is to re-
sort to the 3D Radon transform, which reads as
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f̌~n, s ! 5 E
R3

f~r!d ~s 2 r • n!dr, (3)

where the centered dot denotes the scalar product.3 The
3D Radon transform describes the integration of f(r) over
a plane that is perpendicular to the vector n P S2 and
lies a distance s from the origin. The inversion of Eq. (3)
has been known from the beginning of the century, when
J. Radon and H. A. Lorentz independently found that
f(r) 5 21/(8p2)¹2*S2f̌(n, r • n)dn, where ¹2 is the La-
placian acting on r. To make use of this formula, which
is often referred to as the inverse Radon transform, one
needs to establish a connection between the Radon trans-
form and Eq. (1). This connection is given by the follow-
ing

Theorem:
If g is a homogeneous distribution of degree 22, i.e.,
g (ts) 5 t22g (s), then

g* f̌~n , s • n! 5 E
S2

g ~u • n!g~s,u!du, (4)

where * denotes the convolution over the second variable
of the Radon transform.4–6 Let us observe that in com-
bination with the inverse Radon transform, the theorem
gives us a general method of finding function f from its
cone-beam projections. Several choices of function g can
be considered, leading to different reconstruction algo-
rithms. In particular, the choice g (s) 5 d8(s) gives us
the Grangeat reconstruction formula,7 and g (s)
5 *2`

1`u su exp (2iss) ds defines algorithms suggested by
Feldkamp et al.8 and Smith.9 Bronnikov and
Duifhuis examined the latter approach in combination
with wavelet-based filtering using g2 j(s)
5 *2`

1`W(2 js)u su exp(2iss) ds, where W(2 js) is the Fou-
rier transform of the wavelet at the jth scale.10

For a complete set of cone-beam projections to be ob-
tained certain geometrical conditions have to be met. As
early as 1961, A. A. Kirillov formulated such conditions in
his pioneering work on cone-beam reconstruction of a
2000 Optical Society of America
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complex-valued n-dimensional function.11 Later, similar
conditions were applied in image reconstruction, where
they are often referred to as ‘‘Kirillov–Tuy’s completeness
conditions.’’ 12,13 Another form of completeness condition
for a discrete problem was proposed by Barrett and
Gifford.14 The Kirillov–Tuy conditions can be expressed
as follows: ‘‘The cone-beam data are complete and the
corresponding inverse problem has an exact solution if ev-
ery plane that is orthogonal to vector n P S2 and lies on
the distance usu < 1 from the origin intersects the source
path at least in one point.’’ To explain the nature of these
conditions, we observe that the scalar product s • n 5 s
on the left-hand side of Eq. (4) describes such a plane.
Thus, to recover the Radon transform over all planes in-
tersecting the unit ball, we require that every equation
s • n 5 s with usu < 1 has at least one solution with re-
spect to the source locus s. For instance, a unit sphere
that coincides with the support of the image presents a
complete geometry: All planes that intersect the unit
ball will intersect the source path. On the other hand, a
circular orbit gives us an example of incomplete geom-
etry: There are planes (which are parallel to the plane of
the circle) intersecting the object but not the source orbit.
In this case, an accurate inversion is not possible. How-
ever, satisfactory results can be obtained if the source is
relatively far from the reconstructed object.8,10,15,16

Kirillov–Tuy orbits can be implemented by a nonplanar
motion of the source. Several examples of such orbits are
considered in the literature.9,13,17–22 In this paper we
shall consider the parametric representation s 5 s(u), u
P U and implement the scanning on a cylinder, which
yields

s~u! 5 @R cos u, R sin u, t~u!#T, u P U, (5)

where R is the radius of the cylinder and t (u) is the axial
position of the source. The set U can be defined in a way
that allows us to implement various scanning configura-
tions; we shall consider examples of circular and helical
scanning in Section 5.

Accurate reconstruction algorithms based on Eq. (4) re-
quire complex and long computations. As was shown by
Defrise and Clack,22 the main difficulty here is the non-
stationary nature of the problem. At the same time, as
has been shown by several authors, the use of the fast

Fig. 1. Geometry of cone-beam scanning. The support of func-
tion f(r) is shown as a gray ball. The position of the source on
the path about the object is given by vector s. The line integral
is taken along the dashed line that is parallel to unit vector u.
A cone-beam projection of the object is collected by rotating vec-
tor u.
Fourier transform for computing the Radon transform
can accelerate the reconstruction.22–26 However, no
closed-form algorithm similar to conventional filtered
backprojection can be found here without resorting to an
approximation. The latter can be achieved, for instance,
by using a rebinning algorithm, as was shown by Noo
et al.27 Since Feldkamp et al.8 proposed their approxi-
mate filtered backprojection algorithm for the single
circle, several similar methods have been suggested for
different orbits20,21 however, to my knowledge, very few
backprojection-and-filtering algorithms, which first per-
form backprojection and then filtering, have been studied
in the present context, although they have been actively
studied for parallel-beam and fan-beam recon-
struction.28,29 So far, mostly a spherical configuration of
a cone-beam detector has been applied for derivation of
backprojection-and-filtering algorithms.30,31 For in-
stance, Peyrin30 considered a generalization of the rho-
filtered backprojection for both 4p parallel and divergent
geometries. A weighted backprojection was performed,
and then a 3D filtering was carried out in the Fourier do-
main by applying a filter with modulation transfer func-
tion (MTF) uku, where k 5 (kx , ky , kz) is a vector of spa-
tial frequencies. Cho et al.31 generalized this result for
the case of truncated spherical geometry. Their algo-
rithm was also based on the use of a weighted backprojec-
tion, after which they applied the Colsher filter, which is
nothing but uku weighted by a factor dependent on the ac-
ceptance angle. Although satisfactory results were ob-
tained in a number of experiments with mathematical
phantoms, both geometries—complete and truncated
spheres—remain impractical in SPECT and redundant in
CT. Another approach was presented by Peyrin et al.,32

where the authors found an analytical description for the
point-spread function (PSF) of a cone-beam system with
source orbits such as a circle and two orthogonal circles.
In this method, a shift-invariant approximation of a shift-
variant PSF was used for cone-beam reconstruction under
the assumption that the cone-beam geometry can be re-
placed by a parallel-beam geometry.32 In contrast to the
result of Peyrin et al.,32 here a general description is pro-
vided of the PSF for any source orbits that lie on a cylin-
der wrapping the object. Furthermore, a weighting fac-
tor in backprojection is introduced that allows us to
simplify the description of the PSF and consequently to
obtain a unique and simple expression for the MTF of the
approximate shift-invariant reconstruction filter for dif-
ferent data-acquisition geometries. Our reconstruction
algorithm can be described by the following diagram:

g~s,u! →
backprojection

fs~r! →
deblurring

f~r!.

In the deblurring step of the algorithm an imaging equa-
tion is introduced, allowing us to describe a reconstruc-
tion problem as an image-restoration problem with a
shift-variant PSF. After applying the approximation, we
are able to formulate the problem in the form of a convo-
lution equation that can be solved efficiently by using the
fast Fourier transform. A formula for the reconstruction
filter is given, and the method is numerically evaluated
for the circular and helical source orbits.
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2. IMAGING EQUATION
Using representation (5), we can rewrite the basic equa-
tion [Eq. (1)] in the form of the cone-beam transform

g(s~u!, u) 5 E
0

`

f(s~u! 1 tu)dt, u P U, u P S2

(6)

on orbit s(u). Consider the x-ray transform

f̂~s~u!, u! 5 E
2`

1`

f(s~u! 1 tu)dt, (7)

where the integration is carried out over the whole line
passing through the point s(u). Comparing equations (6)
and (7), we may write

f̂(s~u!, u) 5 g(s~u!, u) 1 g(s~u!,2u). (8)

To derive our image-reconstruction algorithm, we use no-
tation of the delta function, which allows us to rewrite Eq.
(7) in the form

f̂(s~u!, u) 5 E
2`

1`E
R3

f~r!d(r 2 s~u! 2 tu)drdt

5 E
R3

f~r!E
2`

1`

d(r 2 s~u! 2 tu)dtdr. (9)

Let us define a backprojection image fs(r), which can be
found by averaging values of the x-ray transform at the
point r. The index s in fs(r) indicates the dependence of
the backprojection on a particular source path. Function
fs(r) can be defined as

fs~r! 5 E
U

1

ur 2 s~u!u
f̂Xs~u!,

r 2 s~u!

ur 2 s~u!u Cdu. (10)

It should be pointed out that the cone-beam backprojec-
tion used in a filtered backprojection algorithm requires a
weighting coefficient ur 2 s(u)u22 (Ref. 22). Neverthe-
less, we are at liberty to define a backprojection operator,
applying weighting factor that simplifies the formula for
the reconstruction filter. The relation of fs(r) to the
cone-beam data g can be found by inserting Eq. (8) into
Eq. (10), which yields

fs~r! 5 E
U

1

ur 2 s~u!u FgXs~u!,
r 2 s~u!

ur 2 s~u!u C
1 gXs~u!,

s~u! 2 r

ur 2 s~u!u CGdu

5 E
U

1

ur 2 s~u!u
gXs~u!,

r 2 s~u!

ur 2 s~u!u Cdu,

where we have assumed that the orbit lies on a surface
that completely covers the object and therefore

gXs~u!,
s~u! 2 r

ur 2 s~u!u C 5 0.

Inserting Eq. (9) into Eq. (10), we find
fs~r! 5 E
U

1

ur 2 s~u!u
E

R3
f~r8!E

2`

1`

dXr8 2 s~u!

2 t
r 2 s~u!

ur 2 s~u!u Cdtdr8du

5 E
R3

f~r8!E
U
E

2`

1`

d ~r8 2 s~u!

2 t8(r 2 s~u!)!dt8dudr8,

where we have used the change of variable t8 5 t/ur
2 s(u)u. Note that the weighting factor in backprojec-
tion has been eliminated by the change of variable. The
integral over t8 can be rewritten as

E
2`

1`

d ~r8 2 s~u! 2 t~r 2 s~u!)!dt

5 E
2`

1`

d ~r8 2 r 1 r 2 s~u! 2 t(r 2 s~u!)!dt

5 E
2`

1`

d ~r8 2 r 2 ~t 2 1 !(r 2 s~u!)!dt

5 E
2`

1`

d ~r 2 r8 1 t8(r 2 s~u!)!dt8,

which gives us an integral equation

E
R3

f~r8!hs~r, r 2 r8!dr8 5 fs~r!, (11)

with the kernel

hs~r, r0! 5 E
U
E

2`

1`

d ~r0 1 t(r 2 s~u!)!dtdu. (12)

The function hs(r, r0) can be interpreted as a shift-
variant PSF of a cone-beam imaging system. If hs were
not a function of r, then Eq. (11) would be a convolution,
which would greatly simplify matters. However, this is
not the case, and we need to apply certain conditions un-
der which a suitable approximation to a convolution equa-
tion can be found, as will be done in Section 4.

3. POINT-SPREAD FUNCTION
Let us rewrite Eq. (12) using Eq. (5), which yields

hs~r, r0! 5 E
U
E

2`

1`

d(x0 1 t~x 2 R cos u!)

3 d ( y0 1 t~ y 2 R sin u!)

3 d ( z0 1 t~z 2 t~u!)dtdu. (13)

The inner integral in Eq. (13) can be evaluated as
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E
2`

1`

d(x0 1 t~x 2 R cos u!)d ( y0 1 t~ y 2 R sin u!)

3 d ~z0 1 t(z 2 t~u!)!dt

5
1

u y 2 R sin uu E2`

1`

d(x0 1 t~x 2 R cos u!)

3 d(z0 1 tS z 2 t~u!)dS t 1
y0

y 2 R sin u Ddt

5 d(~ y 2 R sin u!x0 2 ~x 2 R cos u!y0)

3 dXz0 2
z 2 t~u!

y 2 R sin u
y0C.

Now the integral over u can be evaluated. To this end,
we rewrite Eq. (13) as

hs~r, r0! 5
1

~x0
2 1 y0

2!1/2 E
U

dXz0 2
z 2 t~u!

y 2 R sin u
y0C

3 dX~ y 2 R sin u!x0

~x0
2 1 y0

2!1/2 2
~x 2 R cos u!y0

~x0
2 1 y0

2!1/2 Cdu,

where we have multiplied and divided the argument of
the second delta function by (x0

2 1 y0
2)1/2. Using f

5 arctan( y0 /x0), so that cos f 5 x0 /(x0
2 1 y0

2)1/2 and
sin f 5 y0 /(x0

2 1 y0
2)1/2, we can evaluate the integral as

E
U

d Xz0 2
z 2 t~u!

y 2 R sin u
y0Cd(~ y 2 R sin u!

3 cos f 2 ~x 2 R cos u!sin f)du

5
1

R
E

U
dXz0 2

z 2 t~u!

y 2 R sin u
y0Cd(sin~ f 2 u!

1 ~ y cos f 2 x sin f!/R)du

5
1

R
E

U
dXz0 2

z 2 t~u!

y 2 R sin u
y0C

3 (
n51

2
d ~u 2 um!

ucos~ f 2 um!u
du

5
1

@R2 2 ~xy0 2 yx0!2/~x0
2 1 y0

2!#1/2

3 (
n51

2

dXz0 2
z 2 t~um!

y 2 R sin um
y0C.

Here we have used the relation d(a(b)) 5 (m 5 1
M d (b

2 bm)/uda/db(bm)u, where bm are roots of the equation
a(b) 5 0. In this way, 0 , um < 2p must be the roots of
the equation

sin~ f 2 u! 1 ~ y cos f 2 x sin f!/R 5 0;

therefore

um 5 arcsinF y0

~x0
2 1 y0

2!1/2G 2 arcsinF xy0 2 yx0

R~x0
2 1 y0

2!1/2G
1 ~m 2 1 !p, m 5 1, 2 (14)
and

ucos~ f 2 um!u 5 UcosH arcsinF xy0 2 yx0

R~x0
2 1 y0

2!1/2G J U
5 F1 2

1

R2

~xy0 2 yx0!2

x0
2 1 y0

2 G1/2

.

Thus the final expression for the PSF is

hs~r, r0! 5
1

@R2~x0
2 1 y0

2! 2 ~xy0 2 yx0!2#1/2

3 (
m51

2

d Xz0 2
z 2 t~um!

y 2 R sin um
y0C. (15)

The expression of the PSF given by Eq. (15) has a clear
structure: The sum of the delta functions is responsible
for representation of the blurring in the direction of the z
axis, whereas the multiplicative factor before the sum de-
scribes the blurring in the transaxial planes. Such sim-
plicity of the PSF structure is due to the specially chosen
weighting factor in backprojection and because of the for-
mulation of the reconstruction problem for a cylindrical
support of the source orbit. As seen from the paper by
Peyrin et al.,32 the use of a general form of backprojection
with a spherical support of the source orbit leads to a
more cumbersome expression for the PSF. Unlike the re-
sult by Peyrin et al.,32 which was derived only for circular
orbits, Eq. (15) describes the PSF of a cone-beam system
for arbitrary orbits given by Eq. (5).

4. SHIFT-INVARIANT APPROXIMATION
In this section we consider a shift-invariant approxima-
tion to the function hs(r,r0), which allows us to ignore the
dependence on r, reducing Eq. (11) to convolution. Let us
assume that

R @ 1, (16)

i.e., the radius of the cylindrical support of the source
path is much larger than the radius of the spherical sup-
port of function f. Then Eq. (14) can be reduced to

ũm 5 arcsinF y0

~x0
2 1 y0

2!1/2G 1 ~m 2 1 !p, (17)

which yields

sin~ ũm! 5
y0

~x0
2 1 y0

2!1/2 . (18)

Using ũm , we can rewrite the sum in Eq. (15) as

(
m51

2

dXz0 2
z 2 t~ ũm!

y 2 R sin ũm

y0C
' (

m51

2

dXz0 1
1
R

~x0
2 1 y0

2!@z 2 t~ ũm!#C
' 2d ~z0!. (19)

On the other hand,
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@R2~x0
2 1 y0

2! 2 ~xy0 2 yx0!2#1/2 ' R~x0
2 1 y0

2!1/2

(20)

if inequality (16) holds. Thus, using approximations
given by relations (19) and (20), we arrive at the desired
function

h̃s~r0! 5
2

R

d ~z0!

~x0
2 1 y0

2!1/2 , (21)

which describes a shift-invariant approximation to the
PSF. Using the function h̃s(r0) instead of the PSF
hs(r, r0) in Eq. (11), we can reduce the latter to the con-
volution. The presence of the delta function d (z0)
5 d (z 2 z8) suggests that 3D filtering in Eq. (11) is re-
duced to 2D filtering of transaxial planes. Thus Eq. (11)
can be approximated in the Fourier domain by the convo-
lution equation

H̃s~kx , ky!F~kx , ky , z ! ' Fs~kx , ky , z !,

where H̃s(kx , ky) is the Fourier transform

H̃s~kx , ky! 5
2

R

2p

~kx
2 1 ky

2!1/2 (22)

of the approximate PSF and F and Fs are the Fourier
transforms in the transaxial planes of the image f and the
backprojection fs , respectively.

The weighting factor in backprojection equation (10)
also has to be changed in order to reflect the approxima-
tion made. It is easy to show that if inequality (16) holds,
then

ur 2 s~u!u ' $R2 1 @z 2 t~u!#2%1/2.

The factor 2/R can be taken out of expression (22), in-
verted, and inserted into the weighting factor in back-
projection, which then becomes

R

2$R2 1 @z 2 t~u!#2%1/2 .

5. ALGORITHM
The reconstruction algorithm can be described by the fol-
lowing two steps:

1. Weighted backprojection

f̃ s~r! 5
R

2
E

U

1

$R2 1 @z 2 t~u!#2%1/2 gX r 2 s~u!

ur 2 s~u!u
, uCdu.

2. Filtering

~a! F̃s~kx , ky , z ! 5 ~2p!21E
2`

` E
2`

`

f̃ s~r!

3 exp@ 2 i~kxx 1 kyy !#dxdy;

~b! F̃~kx , ky , z ! 5 Is~Akx
2 1 ky

2!A~Akx
2 1 ky

2!

3 F̃s~kx , ky , z !;
~c! f̃~r ! 5 ~2p!21E
2`

` E
2`

`

F̃~kx , ky , z !

3 exp@i~kxx 1 kyy !#dkxdky ,

where

Is~r! 5
r

2p
(23)

describes the inverse filter and A(r) is the MTF of the
apodization window. For instance, we can employ the
von Hann window

A~r! 5 H 0.5 1 0.5 cos~pr/V! for r < V

0 for r . V
,

where V is the cutoff frequency.
Consider two particular implementations of our algo-

rithm, which are based on the circular and helical data-
acquisition orbits. A circular scan can be described by
Eq. (5) with

t~u! 5 0,

U 5 $u : 0 < u , 2p%.

This is an example of an incomplete geometry that, how-
ever, allows simple implementation. As an example of a
nonplanar orbit, we will use a helix with n turns about
the object. Let us assume that the backprojection is done
with successive 2p segments of the helix. Such a geom-
etry can be described by Eq. (5) with (n . 1)

t~u! 5 S 1 1
1

n 2 1 D S u

pn
2 1 D ,

U 5 $u : l~z ! < u , l~z ! 1 2p%,

where

l~z ! 5 pnXz 2 1/~n 2 1 !

1 1 1/~n 2 1 !
1 1C

is chosen in such a way that we can center the 2p seg-
ment on a z slice. The multiplication factor 1 1 1/(n
2 1) in function t serves to ensure completeness of all 2p
segments for transaxial slices lying in the interval 21
< z , 1.

6. EVALUATION
To evaluate the performance of the suggested algorithm,
we have applied two numerical phantoms, as used by
Kudo and Saito,18 to study exact reconstruction methods
based on Eq. (4). For geometrical parameters of the
phantoms, we refer to the work by Kudo and Saito.18

The first phantom consists of several balls with different
densities simulating the bone structure, tissue, and tu-
mors. The bone is represented by a value of 2.0, and the
differences between the structures representing the tis-
sue are relatively small: The normal tissue is repre-
sented by a value of 1.02, and anomalies are represented
by densities of 1.04 and 1.00, which is consistent with the
practical situation in medical CT. The object is centered
on the origin, and its radius is equal to 0.9. Twelve
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transaxial cross sections of the phantom are depicted in
Fig. 2, where the lower and upper bounds of the gray-level
window were set to 0.99 and 1.05, respectively. To simu-
late tomographic measurements with a circular scan, we
computed 240 cone-beam projections over 360° with 128
3 128 pixels in each projection. For the helical scan, we
used n 3 120 projections acquired on a helix with n 5 6
turns. The reconstructed image was represented by
128 3 128 3 128 voxels. The results for R 5 3.0 are
shown in Fig. 3. Note that we do not see deterioration of
the density in the areas away from the plane of the circle,
which is a characteristic artifact of the Feldkamp
algorithm.18 The reconstructed images are close to those
of the phantom. The images obtained for the helix (Fig.
4) are similar to those for the circular orbit, and are very
close to those of the phantom as well. To carry out a
more quantitative comparison, we have depicted in Fig. 5
the intensity profiles along the line (x, 0.25, 20.35)

Fig. 2. Numerical phantom used in the simulation studies.
The bone is represented by a value of 2.0, and the normal tissue
is represented by a value of 1.02, with a maximum density of 1.04
and a minimum density of 1.00. The object is centered on the
origin, and its radius is equal to 0.9. The x –y planes are shown
for z 5 0.1k 2 0.55, k 5 0, 1 ,..., 11. Image values between
0.99 and 1.05 are displayed.

Fig. 3. Reconstructed images of the phantom. The reconstruc-
tion was made by using the circular orbit with radius R 5 3.0.
through the image. Here we can see that the single-
circle orbit provides a certain bias in the reconstructed
values, which is, however, relatively small. The helix
also introduces small artifacts near the edges of the im-
age. Nevertheless, both reconstructions are very close to
the phantom and are similar to reconstructions obtained
by more sophisticated algorithms.18

To study artifacts of the approximation more closely,
we carried out a numerical experiment with a disk phan-
tom. This phantom comprises seven equal ellipsoids
with uniform density centered on the z axis. Figure 6

Fig. 4. Reconstructed images of the phantom. The reconstruc-
tion was made by using the helical orbit with radius R 5 3.0 and
number of turns n 5 6.

Fig. 5. Intensity profiles of the phantom and the reconstructed
images along the line given by (x, 0.25, 20.35). The profile of
the phantom is shown by the dashed lines.

Fig. 6. Reconstructed images of the disk phantom; planes given
by y 5 0 are shown. The reconstructions were obtained by us-
ing the circular (upper row) and helical (lower row) orbits with
variable radii R 5 12.0, 6.0, 3.0, 1.5.
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represents planes y 5 0 of the images of the phantom re-
constructed with the circular and helical orbits with four
different radii: 12.0, 6.0, 3.0, and 1.5, where the whole
range of image values is displayed. For the circular-scan
reconstruction we used 120 projections, and helical recon-
structions were obtained from n3120 projections with n
5 6 turns of the helix. The circular-scan reconstruction
made for R 5 12.0 coincides well with the phantom and is
practically the same as the helical-scan reconstruction.
For R 5 6.0, certain artifacts appear at the top and bot-
tom of the image reconstructed with the circular orbit,
whereas the helical reconstruction still has accurate
shape and density. In the case of R 5 3.0, the recon-
struction with the single-circle orbit has large artifacts in
the areas away from the central plane, which corresponds
well with the results obtained by the Feldkamp
algorithm.18 The helical orbit provides more accurate re-
construction, although certain artifacts appeared along
the edges of the disks. For R 5 1.5, both reconstructions
contain severe degradations of the shape and the density.
However, in the case of the circular orbit, the central slice
z 5 0 is still reconstructed well, since the algorithm is re-
duced here to an exact fan-beam reconstruction formula.
For the helical orbit, we observe typical artifacts of distor-
tion of the shape of the disks, which can be reduced by
minimizing the pitch of the helix.

7. CONCLUSION
By introducing a representation of the cone-beam trans-
form through an integral equation whose kernel is the
line delta function in 3D space, we have shown that the
cone-beam reconstruction problem can be reduced to an
image-restoration problem characterized by a shift-
variant PSF. An analytical description of the PSF is
given. To derive a shift-invariant approximation in the
form of a convolution equation, we assume that the source
is relatively far from the object to be reconstructed. The
shift-variant PSF can then be reduced to a convolution
kernel. Unlike the original Feldkamp algorithm8 and
the method by Peyrin et al.32 our approach allows us to
apply any source orbit that lies on a cylinder wrapping
the object. The use of a specially chosen weighting factor
in backprojection enables us to simplify the expression of
the PSF and the reconstruction filter. A formula for such
a shift-invariant filter of backprojections is given in the
Fourier domain in the form of a 2D transaxial ramp filter.
For the plane of the circular orbit, our algorithm coincides
with an exact fan-beam reconstruction formula presented
earlier.29 One of the advantages of the algorithm is that
it can be applied to the axially truncated data without
any modification. Only 2D filtering in the transaxial
planes is required, thereby shortening processing time.
Nevertheless, it is a well-known fact that for accurate
computation of deconvolution of the backprojection, the
backprojection area has to be at least four times larger
than the support of the image.33 Thus it is very likely
that the backprojection-and-filtering algorithm suggested
is a few times slower than the Feldkamp algorithm; how-
ever, the optimization of the computer code and the de-
tailed time comparison are possible subjects for further
study. A numerical evaluation of the method has been
made for the circular and helical orbits, where satisfac-
tory results were obtained for both geometries. For in-
stance, the results for the phantom simulating small dif-
ferences in the density of tissue are very close to those
that were previously obtained by reconstruction of the
same phantom by the use of more sophisticated exact
methods. For the circular orbit with radius R 5 3.0, we
do not see the characteristic density artifacts in the areas
away from the central plane, which seem to be inherent
for the Feldkamp algorithm. Such a good performance of
our algorithm in this case can probably be explained by
the fact that the density of the phantom varies insignifi-
cantly in the area that represents the tissue. This causes
localization of the corresponding Fourier components
about the origin, providing satisfactory approximation of
the Fourier transform of the PSF by Eq. (22) even for rela-
tively small radii of the orbit. Serious problems are more
likely with objects whose density changes considerably
along the z axis, causing the presence of large high-
frequency components along the kz axis in the Fourier do-
main. This is illustrated in the experiment with the disk
phantom. For the circular orbit, we indeed observe
strong density artifacts, which are very similar to those of
the Feldkamp algorithm. At the same time, the use of
the helical orbit helped us to improve the reconstruction
for relatively small radii of the orbit, such as R 5 3.0,
that can be implemented in medical imaging.

The author can be reached at the address on the title
page or by phone, 31-26-356-2791; fax, 31-26-351-5456; or
e-mail, andrei@kema.nl.
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