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Reconstruction of Attenuation Map Using
Discrete Consistency Conditions

Andrei V. Bronnikov

Abstract—Methods of quantitative emission computed tomog-
raphy require compensation for linear photon attenuation. A
current trend in single-photon emission computed tomography
(SPECT) and positron emission tomography (PET) is to employ
transmission scanning to reconstruct the attenuation map. Such
an approach, however, considerably complicates both the scanner
design and the data acquisition protocol. A dramatic simplification
could be made if the attenuation map could be obtained directly
from the emission projections, without the use of a transmission
scan. This can be done by applying the consistency conditions that
enable us to identify the operator of the problem and, thus, to
reconstruct the attenuation map. In this paper, we propose a new
approach based on the discrete consistency conditions. One of the
main advantages of the suggested method over previously used
continuous conditions is that it can easily be applied in various
scanning configurations, including fully three-dimensional (3-D)
data acquisition protocols. Also, it provides a stable numerical
implementation, allowing us to avoid the crosstalk between the
attenuation map and the source function. A computationally
efficient algorithm is implemented by using the QR and Cholesky
decompositions. Application of the algorithm to computer-gener-
ated and experimentally measured SPECT data is considered.

Index Terms—Attenuation correction, positron emission to-
mography (PET), single-photon emission computed tomography
(SPECT).

I. INTRODUCTION

COMPENSATION for photon attenuation is one of the
major issues in quantitative emission computed tomog-

raphy. Most state-of-the-art single-photon emission computed
tomography (SPECT) and positron emission tomography (PET)
systems provide transmission scanning capabilities, enabling
us to reconstruct the attenuation map and use it for attenuation
correction. This method, however, complicates both the scanner
design and the data acquisition protocol. An alternative way to
obtain the attenuation map is to reconstruct it directly from the
emission data, which would greatly simplify the apparatus and
the measurement technique. Two general approaches to this
problem have been discussed in literature. The first involves
using alternating iterations between the activity image and the
attenuation map. Starting from a pioneering paper written by
Censoret al. [1], several attempts to apply such methods have
been reported [2]–[10]. However, in spite of limited success,
methods of simultaneous reconstruction often cause artifacts

Manuscript received September 3, 1999; revised February 1, 2000. The As-
sociate Editors responsible for coordinating the review of this paper and recom-
mending its publication were M. Defrise, and F. J. Beekman.

The author is with KEMA, Arnhem 6800ET, The Netherlands (e-mail: an-
drei@kema.nl).

Publisher Item Identifier S 0278-0062(00)05309-X.

in the form of crosstalk between the activity image and the
attenuation map. Another approach involves finding the attenu-
ation map without reconstructing the activity image. In SPECT,
the simplest method of doing this is to apply an approximate
linear relation that exists between the attenuation map and the
data measured at two opposite positions of the scanner [11].
The approximation, however, requires the assumption about
relatively low attenuation, which restricts possible applications
of such a method. A more general approach was proposed
by Natterer [12], who suggested applying the consistency
conditions for the range of the attenuated Radon transform
to obtain the attenuation map from SPECT-type data. This
method has been examined in several papers [13]–[16]. Es-
sentially, the consistency conditions are given in the form of a
functional that equals zero on the range of the operator of the
problem. This enables us to identify the operator, providing
that a function from its range is available. In particular, the
attenuation map, which is a parameter of the imaging operator,
can be found. An advantage of such an approach is that no
information about the unknown activity image is required
and no attempt to reconstruct it is made. Certain difficulties
appear if the data measured are not in the range of the operator
identified because of the noise, discretization errors, and other
physical factors that corrupt them. In combination with the
ill-posedness of the problem, this causes instability of the
solution unless regularization procedures are applied. The
idea of regularization is to replace the ill-posed equation of
the problem by a nearby well-posed equation. For instance, a
stable reconstruction can be provided by such parameterization
of the problem that drastically decreases its dimension (see,
e.g., [14]). As has recently been shown, this enables us to
find the uniform elliptical attenuation distribution that is most
consistent with the measured SPECT data [16]. At the same
time, it is also possible to restrict a number of the degrees of
freedom of the solution by reformulating the problem in a
discrete setting. This motivated us to search for a new set of
consistency conditions that can be applied to the discretization
of the range of the operator.

The approach suggested in this paper is fully based on a dis-
crete representation of the consistency conditions, rather than
their continuous description. This has several important conse-
quences. First of all, such an approach can easily be applied
with an arbitrary configuration of the scanner, and the use of
fully three-dimensional (3-D) data acquisition geometry is an
important advantage of our method. Secondly, unlike the con-
tinuous method, the discrete method enables us to take into ac-
count the influence of various physical factors, such as finite de-
tector resolution, system response, and scatter, which may con-
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siderably improve the accuracy of modeling. The discrete con-
sistency conditions can easily be formulated for both SPECT
and PET imaging modalities. Finally, as is shown in this paper,
the discrete consistency conditions provide a relatively simple
algorithm, whose stability can be controlled by the well-estab-
lished method of Tikhonov regularization. We consider gen-
eral mathematical foundations of the consistency conditions and
demonstrate a relation existing between continuous and discrete
conditions. The discrete consistency conditions are formulated
by means of orthogonal projecting onto the orthogonal comple-
ment of the column space of the matrix of the problem. We pro-
pose to compute the projector by using orthogonal decomposi-
tions of the matrix, whereas a corresponding system of nonlinear
algebraic equations can be resolved by the Newton method.
Such a numerical technique can be classified as an instance of a
general optimization approach suggested by Golub and Pereyra
[17] for nonlinear least-squares problems whose variables sep-
arate. One of the central issues of their approach is the use of
a formula for the Frésche derivative of the orthogonal projector
[17]. In our previous paper [18], we have proposed a modifica-
tion of this formula for the case of the identification problem for
the attenuated Radon transform and applied the singular value
decomposition (SVD) for performing a numerical analysis of
the discrete consistency conditions. In this paper, we not only
give a broader description and interpretation of the consistency
conditions, but also suggest a computationally advanced ver-
sion of the method, resorting to much more efficient QR and
Cholesky decompositions, which makes 3-D reconstruction fea-
sible. The modified Golub–Pereyra formula obtained in paper
[18] is used here to compute the Jacobian matrix of the problem.
We describe the corresponding algorithm and consider its ap-
plication to computer-generated and experimental data; for the
first time, reconstruction of the attenuation map from emission
projections is demonstrated in the framework of cone-beam 3-D
SPECT imaging.

II. THEORY

A. Continuous Problem

Consider a general analytical description of the reconstruc-
tion problem in SPECT (PET) imaging in the form of

(1)

where is a linear integral operator, is the source function,
and stands for the measured data. The attenuation mapis
the parameter of the equation.and are sufficiently smooth
functions with finite support. Note that in SPECT reconstruc-
tion with two-dimensional (2-D) parallel-beam geometry, oper-
ator stands for the attenuated Radon transform. The recon-
struction problem in emission tomography is to find the source
function with known and measured. In the present paper,
a problem of determination of the attenuation mapfrom mea-
sured data is considered. After obtaining function, the major
problem of reconstruction of can be resolved. One of the
methods of obtaining from the data is to apply the consis-
tency conditions to the range of operator. Let us describe the
main principles of this approach.

Let us assume that , where is a Hilbert space with
inner product . Let stand for a closed subspace of.
Then, any element can be represented as

(2)

where is an orthogonal projection ofonto and
is an orthogonal projection of onto , where is

the orthogonal complement to; that is, a linear space whose
elements are orthogonal to any element of. Let
and , where is the range of the integral
operator and is the orthogonal complement to this
range. The consistency conditions for (1) is then written in the
form

(3)

Obviously, if (3) holds, and (1) can be resolved with
respect to . To apply(3), we need to consider the nullspace

of the adjoint operator. Because ,
conditions (3) can be interpreted as the requirement of orthogo-
nality of to , which can be written as

(4)

where is a nonzero solution of a homogeneous linear equa-
tion

(5)

Equation (4) describes the consistency conditions for (1). For
the attenuated Radon transform, the ghost functionsof the
adjoint operator have been found by Natterer, who demonstrated
for the first time the use of (4) for reconstruction of function

from the data [12]–[14]. A numerical implementation of
such a method requires algebraization of (4) with solving the
corresponding system of nonlinear equations by some iterative
method.

B. Discrete Problem

Discretization of (1) provides a system of algebraic equations
characterized by matrix , where a sampled atten-
uation map is given by vector , which plays the role of
the parameter of the matrix. In tomography, is often referred
to as the “projection matrix” whose entries can be computed by
using a pixel (in 2-D) or voxel (in 3-D) representation of the
images (we will refer to voxels throughout this paper). For ex-
ample, the elements of matrix for the SPECT problem can
be computed as

(6)

where is the length of intersection of theth ray with the th
voxel and contains indexes of voxels that are intersected by
the th ray on its segment between theth voxel and the detector.
The source function and the attenuation map can be represented
by images with different resolutions: we usevoxels for the
activity image and voxels for the image of the attenuation map.
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A number of equations should be greater than or equal to the
number of the unknowns; therefore, we assume

(7)

which means that matrix is rectangular.
Because the orthogonal projection can easily be found in

linear algebra by using the pseudoinverse, a direct application
of (3) is feasible in the discrete setting. Consider a system

. The linear space can be
represented as a direct sum of the
column space and its orthogonal complement ,
meaning that each vector can be written in a unique
way as , where and .
The system is consistent if , which is equivalent to

that coincides with (3). In contrast to the continuous
problem, here we can explicitly define the projection by
means of the Moore–Penrose pseudoinverse of
matrix . Note that the pseudoinverse is routinely used in
numerical linear algebra to compute the least-squares solution

(8)

Using the pseudoinverse matrix, the orthogonal projections onto
the column space of and its orthogonal complement are
written in the form

(9)

where

(10)

are matrices of the orthogonal projectors andis the
identity matrix. Projectors and are idempotent matrices;
that is, and . Matrix is singular.
Using the definition of the orthogonal projector, the discrete
consistency conditions can be written in the form

(11)

Equation (11) describes a system of nonlinear equations that
can be resolved with respect to vector. According to its def-
inition, projector degenerates into the zero matrix when
the pseudoinverse coincides with the right inverse. This is the
case when matrix is a square matrix of a full rank. Thus,
the farther the matrix is from the square matrix of a full rank,
the stronger condition (11) will be. This emphasizes the role of
condition (7), suggesting that the data vector has to have much
larger dimension than that of the searched vector. The question
of how large it must be was studied in [18], where the singular
values of the Jacobian matrix of (11) were computed for fixed

and variable values of . Using computer-generated
data, it was shown that for some particular problem, the choice

caused poor conditioning of the problem, whereas the
case demonstrated satisfactory behavior of the singular
values, which, however, did not improve much for any .

The discrete formulation of the problem permits a discrete
version of (4) to be found. This provides a connection with

the continuous consistency conditions. Observe that the require-
ment of orthogonality of to can be written as

(12)

where is a vector that is orthogonal to each column
of matrix ; that is

(13)

Equations (12) and (13) are discrete counterparts of (4) and (5),
so that vector can be interpreted as a discrete counterpart
of the ghost function used in the continuous consistency con-
ditions. Because all vectors satisfying (13) form a complete or-
thonormal basis for , vector is one of the vectors
of such a basis. Therefore, (12) expresses nothing but a single
equation from system (11). Thus, rows of projector matrix
can be interpreted as discrete counterparts of the ghost functions
used in the continuous consistency conditions.

Equation (12) has a minor independent role because the use
of a single equation would require minimization of a function of
variables instead of solving a system of nonlinear equations as

for the conditions given in the form of (11). This would require
computation of the Hessian matrix, whereas to resolve (11), it
would be sufficient to compute the Jacobian matrix. Also, ana-
lytical differentiation of a single row may prove to be a problem,
in contrast with differentiation of the entire projector. This sug-
gests using (11) for numerical implementation. A corresponding
algorithm is described in the next section.

III. M ETHOD

A. Computation of the Projector

To implement the discrete consistency conditions, the pro-
jector has to be computed. This can be done in different
ways. The most straightforward approach is to use the pseu-
doinverse matrix as in (10), which is perhaps the worst thing
to do because of cumbersome and lengthy computations. The
use of orthogonal decompositions provides much faster solu-
tions. For instance, the Gram–Schmidt orthogonalization can be
used to explicitly compute a basis for the column space of the
matrix. This method requires flops. Another approach is
to apply the SVD, where the left singular vectors form an or-
thonormal basis for the column space; this algorithm has a com-
plexity of flops. A good alternative is provided by
the QR decomposition of the matrix. The QR decomposition re-
quires a minimal number of operations, which can be estimated
as flops. In the QR decomposition, the matrix is
represented as

(14)

where is the orthogonal matrix and is upper
triangular with nonnegative diagonal elements. Matrixcan
be partitioned as , where and

. The columns of and form orthonormal bases
for the column space of matrix and its complement. Thus,
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the pseudoinverse matrix is , and the projectors
are

(15)

B. Reconstruction Algorithm

A solution of the nonlinear system of (11) can be found by
the iterative search algorithm such that

(16)

where is the step size of the algorithm. denotes a
nonlinear operator that enables us to impose certain constraints
on the attenuation map. For example, in the case of the non-
negativity of function , the th element of vector can be
represented by

if
otherwise

Information about values of the attenuation coefficient for dif-
ferent tissues can be incorporated into the algorithm in a similar
way. The initial estimate can be set to zero or ana priori
known approximation. In each step, matrix is computed
by formula (6), its QR decomposition (14) is performed, and
vector of the step size is obtained by the Newton method,
which requires solving equation

(17)

where

and is the Jacobian matrix of the problem. The Jacobian ma-
trix can be found as

(18)

where

is an matrix and stands for theth element of vector
[18]. Using (6), the entries of matrix are computed as

(19)

where contains indexes of voxels that are intersected by the
th ray on its segment between theth voxel and the boundary

of the support of the source function on the side opposite to the
detector.

A few remarks on the algorithm are in order. First, note that
the Jacobian matrix contains the projector . Because
is an column-orthogonal matrix, is a
matrix with rank , which makes the Jacobian matrix sin-
gular by its construction. This reflects the fact that determination
of the attenuation map from emission projections is a severely
ill-posed problem. To find a stable solution of such a problem, a
regularization is required. We discuss the regularization method

in the next paragraph. Also, note that the computation of the Ja-
cobian matrix involves finding the least-squares solution. In
this way, the algorithm suggested provides reconstruction of the
source function as well. At the same time, the activity distribu-
tion is represented here viaand as in (8), and the residual

of the method is minimized with respect to vectoralone,
which makes our approach different from the methods of simul-
taneous reconstruction ofand , where both vectors explicitly
contribute to minimization of the residual. In combination with
the regularization, this allows us to avoid the crosstalk between
the source function and the attenuation map. It should be pointed
out that our algorithm may not provide an optimal reconstruc-
tion of , because the choice of its parameters is aimed at stable
reconstruction of the attenuation map in the first place. How-
ever, after obtaining the attenuation map, the source function
can be found by any method that is better suited for this. For
instance, as shown in Section IV, the Tikhonov method with an
optimally chosen regularization parameter can also be used. An-
other interesting observation is that matrix has to have zero
th row if , because all corresponding have

to be zero. This information can be used to reduce the size of
the problem by removing zero rows of matrix and forming
vector with nonzero data. This has a clear practical explana-
tion: no information on the attenuation map is available in the
case of zero emission.

C. Regularization

In each step of the algorithm, two systems of algebraic equa-
tions have to be resolved. First, the least-squares solutionhas
to be computed, and second, a solution of system (17) has to
be found. We have studied several different methods for solving
these problems. The most straightforward method would be to
apply an iterative technique similar to the algebraic reconstruc-
tion technique (ART). However, such methods failed to provide
sufficient quality of the solution. The reason of that was poor
conditioning of the Jacobian matrix, which is singular because
of the projector. This caused a slow convergency or instability
of iterative methods. At the same time, implementation of reg-
ularization procedures presents certain difficulties in such ap-
proaches. The use of combined algorithms, whereis approxi-
mated by a fast iterative method and system (17) is resolved by
an orthogonal decomposition of its matrix, did not give a desired
result, because the iterative method failed to provide the accu-
racy required for computing the entries of the Jacobian matrix.
It has been found that the Tikhonov regularization method can
provide a sufficient quality of the solution.

The idea of Tikhonov regularization is to approximate the
least-squares solution in a stable way. This can be achieved by
minimization of the following functional:

(20)

where is an matrix approximating the Laplacian and
is the regularization parameter. The second term of func-

tional (20) is called the “stabilizing functional.” Its role is to
suppress instabilities in the solution, providing a certain degree
of smoothness that is controlled by the value of the regulariza-
tion parameter. The regularization parameter has to be chosen
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(a) (b)

Fig. 1. (a) The numerical phantom of the source and (b) the attenuation map, simulating cardiac SPECT imaging.

(a) (b)

Fig. 2. Reconstruction of the attenuation map from noisy emission projections computed for the numerical phantom: (a) the reconstructed image of theattenuation
map and (b) the attenuation coefficient versus the position across the numerical phantom and its reconstruction. The reconstruction was obtained with parameters
� = 0:004 and� = 0:01; the initial guess� was zero.

in accordance witha priori level of the error in the data. How-
ever, because of the large size of the problem, a procedure for
estimation of the regularization parameter is not feasible here.
We assume that the value of the regularization parameter can be
found by trial and error using computer simulations of smaller
problems. The minimizer of functional (20) is given as a solu-
tion of system

(21)

where is an symmetrical matrix. The
choice of the regularization parameter has to ensure that matrix

is positive definite. The most efficient method of solving
systems with positive-definite symmetrical matrices is based on
the Cholesky factorization. We apply the Cholesky factorization

, where is an upper-triangular matrix. System
can be efficiently resolved, providing the

regularized solution , which is used to update the vector
of the attenuation map in (16). The same approach is used to
approximate the least-squares solution. First, system

(22)

with a positive-definite symmetrical matrix is formed. (Here,
is an matrix approximating the Laplacian and is the

regularization parameter). Then, this system is resolved by ap-
plying the Cholesky factorization, and the regularized solution

is used in (19) instead of the least-squares solution. Thus, in
each iteration of the algorithm, we compute one QR decompo-
sition of matrix and two Cholesky factorizations: first
we compute the factorization of an matrix to find vector
and then the factorization of matrix to resolve system
(21). After the attenuation map is reconstructed, the final recon-
struction of the source function can be made by solving system
(22).

IV. RESULTS

A. Computer Simulations

To evaluate the approach, computer simulations of SPECT
imaging were carried out with a mathematical torso phantom.
In the first set of experiments, a 2-D problem with a relatively
high resolution of the image was studied. The second study was
devoted to 3-D cone-beam reconstruction. Let us first consider
the 2-D problem. The numerical phantom simulated a cross sec-
tion through the thorax. The source was modeled as a ring rep-
resenting activity in the heart and an ellipse representing back-
ground activity in the human body [see Fig. 1(a)]. The back-
ground activity was 10 times less than was the activity in the
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(a) (b) (c)

Fig. 3. Reconstruction of the attenuation map with different regularization parameters: (a)� = 0:0005; � = 0:01; (b)� = 0:004; � = 0:0005; (c)� = 0:008;

� = 0:01.

(a) (b)

Fig. 4. Reconstruction of the attenuation map with different initial approximations: (a) all components of vector� are set to 0.1; (b) all components of vector
� are set to 0.3. The reconstructions were made with parameters� = 0:004;� = 0:01, andk = 3.

heart. The attenuation map was represented by two ellipses as-
sociated with the lungs, a small circle for the spine bone and a
large ellipse for the body contour [see Fig. 1(b)]. The major axis
of the ellipse representing the body was 30 cm. The attenuation
coefficient was equal to zero for air, 0.04 cmfor the lungs,
0.15 cm for the soft tissue, and 0.27 cm for the spine. For
characteristic functions of the ellipse, the linear integrals can
be evaluated analytically. We applied such a formula to com-
pute emission projections of the phantom. Sixty views over 360
were simulated with 64 pixels in each view. To more accurately
represent a practical situation, Poisson noise was added to the
data, so that the NMSE of the projections was about 8%. The
total number of counts in the projection data was . No
photon scatter was simulated. The body contour was assumed
to be known. Precisely, the support of the source function was
computed by using positions of nonzero data. This procedure
provided a mask that was used for both the source function and
the attenuation map. The images were sampled with
pixels, but there were only pixels within the
support of the functions to be reconstructed. All zero line inte-
grals were omitted, so that the data vector had the dimension of

.
Fig. 2(a) shows the attenuation map reconstructed after

using iterations of the algorithm. The reconstruction
required about 10 min on a PC with a Pentium II 450-MHz

processor. Parameters and were used.
The initial guess for the attenuation map was zero. As seen
from Fig. 2(a), the use of regularization provides a smooth
function of the attenuation map, but at the same time, the
lungs, the spine, and the body contour are clearly seen and
the reconstructed image corresponds well to the phantom.
No crosstalk between the attenuation map and the source
function is visible. To make a more quantitative comparison,
we have depicted the profiles across the phantom and its
reconstruction in Fig. 2(b). Here, we can see that the values
of the attenuation map are reconstructed satisfactorily. To
investigate the influence of the regularization parameters and
the initial approximation, several computer experiments were
made. Fig. 3 depicts the results obtained in an experiment with
three different sets of the regularization parameters. Here, we
can see that the decrease of parameterreduces the stability
of the reconstruction in the heart region [Fig. 3(a)]. This
instability is similar to the crosstalk of the images reported
for the similar phantom by Manglos and Young [3]. The
instability in the heart region also develops for the smaller
value of parameter [compare Fig. 3(b) and Fig. 2(a)].
Fig. 3(c) shows the case in which both parameters are large
enough to provide the stable reconstruction with no crosstalk.
Comparing images in Fig. 3, we may conclude that the
stability of reconstruction in the heart region is strongly
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(a) (b)

Fig. 5. Functionf (� = 0:01), which was used for computing the Jacobian matrix in the final step of the algorithm: (a) the grayscale image; (b) the intensity
profiles across the numerical phantom and functionf .

(a) (b)

Fig. 6. Reconstruction of the activity distribution using attenuation correction provided by the attenuation map as in Fig. 2: (a) the reconstructedimage of
the activity distribution; (b) the intensity profiles across the numerical phantom and its reconstruction. The reconstruction was made by applyingthe Tikhonov
regularization method with parameter� = 0:00001.

dependent on the choice of both regularization parameters.
The values of the parameters must not be too small. At
the same time, excessively large values of the regularization
parameter may introduce errors in quantitative determination
of the attenuation coefficients. Thus, the strategy for the
choice of the regularization parameters must include a tradeoff
between the error in quantification of the attenuation map and
the instability in the form of the crosstalk of the images;
the regularization parameters can be found by trial and error.
In the next computer experiment, the influence of the initial
guess was considered. First, all components of vector
were set to 0.1. Using the same parameters of the algorithm
as for the reconstruction with the zero initial guess [Fig. 2(a)],
we obtained the image depicted in Fig. 4(a). Here, we can
see that the reconstruction is stable and the values of the
attenuation coefficients are slightly improved as compared
with the case of the zero initial guess. Setting the components
of the initial vector to 0.3, the image shown in Fig. 4(b) was
obtained. As seen from this figure, the algorithm has diverged
for this choice of the initial guess. A possible explanation of

this can be the divergence of the Newton method in the case
of a relatively large residual of the problem.

Although the main goal of this paper is to describe a method
for determination of the attenuation map, it is interesting to see
how estimation of the attenuation map influences reconstruc-
tion of the activity image. First of all, let us demonstrate the
activity distribution that was found as a “byproduct” of our al-
gorithm. Fig. 5 demonstrates function, which was used for
computing the entries of the Jacobian matrix in (19) of the algo-
rithm. This function was obtained in the final step of the algo-
rithm, and therefore, it corresponds to the attenuation map as in
Fig. 2(a). We can see that the use of the Tikhonov regularization
method provided a relatively smooth reconstruction with accu-
rate estimation of the background activity. The level of intensity
in the heart region is, however, lower than that of the phantom.
Nevertheless, this function allowed us to compute a stable re-
construction of the attenuation map with no crosstalk. It should
be pointed out that having the attenuation map, any reconstruc-
tion method can be used to find the activity image. Depending
on the method and its parameters, different activity images can
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(a) (b)

(c) (d)

Fig. 7. Results for the numerical phantom, simulating the myocardial defect: (a) the phantom of the activity image; (b) reconstruction of the attenuation map using
discrete consistency conditions; (c) reconstruction of the activity image with attenuation correction using the true attenuation map as in Fig. 1(b); (d) reconstruction
of the activity image with attenuation correction using the estimated attenuation map as in Fig. 7(b).

be found for the same attenuation map. This is illustrated in
Fig. 6, where the results of applying the Tikhonov regulariza-
tion method based on (22) are shown. The value of the regular-
ization parameter was here 1000 times smaller than that for
the reconstruction as in Fig. 5. Therefore, good spatial resolution
was achieved. As seen from Fig. 6(b), the peaks of the intensity
in the heart region are resolved well and the values of the inten-
sity are close to those of the phantom. Note that the use of the
small value of the regularization parameter caused the amplifi-
cation of noise in the background area. The profiles across the
phantom and the reconstructed image [Fig. 6(b)] show that sat-
isfactory compensation for attenuation has been achieved. The
absolute error in determination of activity in the heart area is in
the range of 8%, which corresponds well to the discrepancy of
the data.

To compare our results with those obtained by using other
methods, we have considered another numerical phantom,
which was slightly different from the previous one, comprising
the myocardial defect. The activity image of this phantom is
similar to that in [6]. The heart was represented by the ring
with two levels of intensity: 150 counts/pixel for the normal
myocardium and 75 counts/pixel for the myocardial defect.
The attenuation map was as in Fig. 1(b). For reconstruction
of the attenuation map, we used the same parameters as for
the reconstruction presented in Fig. 2(a). Despite certain
differences in the reconstruction of the attenuation map for
the phantom with and without the myocardial defect [compare

Fig. 8. Circumferential myocardial profiles of the reconstructions obtained
with the true (dashed lines) and estimated attenuation maps.

Figs. 7(b) and 2(a)], the reconstruction is stable and no trace
of the crosstalk is visible. We remark that our reconstruction
was obtained under far fewer conditions than in [6], in which
measurements with two different energies were required anda
priori information of constant attenuation was used to suppress
the crosstalk by assigning large penalties to the cost function in
the heart region. The comparison with the activity reconstruc-
tion based on the true attenuation map is given in Fig. 7(c) and
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Fig. 9. Simulation of 3-D cone-beam SPECT imaging. The upper row: seven representative axial slices of the 3-D numerical phantom of activity. The middle
row: axial slices of the 3-D numerical phantom of attenuation. The lower row: reconstruction of the attenuation map from cone-beam SPECT emission projections.

(d). Fig. 7(c) shows the source function reconstructed with the
true attenuation map by the Tikhonov regularization method
with . The same method was used to reconstruct
the image based on the estimated attenuation map [Fig. 7(d)].
Both images correspond well to the phantom and have rel-
atively small differences. The image obtained with the true
attenuation map has slightly more homogeneous background
activity, especially near the boundary of the object. This can
be explained by the fact that the true attenuator has the abrupt
edge, whereas the estimated attenuation map has a roll-off
of the values near its boundary. To make a more quantitative
comparison, we used the circumferential myocardial profiles
as shown in Fig. 8. Here, we can see that both reconstructions
coincide well, having a deviation of no more than 10%. The
activity image obtained with the estimated attenuation map
has slightly lower values than does the image based on the
true attenuation map. This can be explained by the fact that
the estimated attenuation map has lower values because of the
regularization. Nevertheless, Figs. 7 and 8 demonstrate that the
suggested method provides results similar to those obtained by
using the true attenuation map.

One of the most attractive features of the discrete consis-
tency conditions is that they can easily be applied for fully 3-D
imaging. We have simulated an experiment with 3-D cone-beam
SPECT imaging using a circular scan. In this experiment, the
focal point of the converging collimator was rotated with the
radius of rotation of 40 cm. The size of the 2-D detector was

cm, and the focal length of the collimator was 60 cm.
The projection was sampled with pixels, and 60 views
over 360 were computed. To reduce the size of the problem,
we used a coarser grid for reconstruction and applied a mask
computed by using nonzero values of the projections. This gave

and , so that about 350 Mb of com-
puter memory was required. Fig. 9 demonstrates seven repre-
sentative axial slices of the 3-D phantom and its reconstruction.
The upper row in Fig. 9 shows the phantom of the activity dis-
tribution. Two hot spots were located in the heart and the liver.

Fig. 10. The Jasczack anthropomorphic torso phantom. The photograph is by
courtesy of Data Spectrum Company.

The background activity was 10 times less than was the activity
in the hot spots. The middle row represents the 3-D attenua-
tion map. Here, we see the lungs, the spine, and the area of
the tissue around the liver. The attenuation coefficients of the
phantom were the same as those of the 2-D phantom. The data
were reconstructed by using the algorithm suggested with
iterations and . The initial guess for the
attenuation map was zero. The lower row in Fig. 9 shows the
reconstruction of the attenuation map from simulated emission
projections. As seen from the first and the last image in the row,
nonzero values were reconstructed in the area where the actual
attenuation map was zero. This can be explained by the influ-
ence of the oblique rays in the cone-beam geometry, which sug-
gests that different slices in the reconstructed image influence
each other. We can also see that the reconstruction of the at-
tenuation map is strongly dependent on the configuration of the
source. For instance, the slices through the heart are similar to
the reconstruction obtained in the case of parallel-beam geom-
etry. Here, we see the area of the lungs and the area of the con-
stant attenuation. The attenuation coefficient is close to that of
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(a) (b)

Fig. 11. Reconstruction of the attenuation map of the anthropomorphic torso phantom: (a) the reconstructed image of the attenuation map; (b) the attenuation
coefficient versus the position across the reconstruction of the attenuation map.

the phantom. However, the quality of reconstruction deteriorates
in the slices where no sources are present, except those of the
background or a single point source. Such slices are shown in
the fourth and fifth images from the left-hand side in the lower
row. In the slice with the point source, the attenuation map con-
tains an error within the area of the source. The values of the at-
tenuation coefficient are too small there. This problem is much
worse in the next slice (the image in the middle of the lower
row). Here, we see a large error in the reconstruction of the at-
tenuation map. It is interesting to note that this image has a sym-
metrical pattern (except the area of the spine, which was slightly
emphasized). This kind of error can be explained by the fact that
the problem has no unique solution in the case of symmetrical
functions and [13]. Both functions are almost symmetrical
here, which might cause the error in the given slice and dete-
riorate the neighboring areas as well. For instance, in the next
slice, we can see that in spite of the presence of an asymmetrical
source, the reconstruction of the attenuation map still contains
certain artifacts with a symmetrical structure. Nevertheless, the
presence of a strong source (the liver) provides a satisfactory re-
construction of the average value of the attenuation coefficient,
showing no crosstalk in the form of low attenuation, which is
one of the advantages of the suggested algorithm.

B. Experimental Data

In the last study, we used experimental data obtained at the
Utrecht University Hospital by applying a SPECT measurement
system to the Jasczack anthropomorphic torso phantom [see
Fig. 10]. The phantom contains different features, such as lungs
and spine, and enables us to simulate activity in the heart, liver,
and tissue. The phantom was filled with Tc-99m; the amount of
activity in the left ventricle was 18 MBq, and the background
contained 84 MBq. A standard SPECT imaging system was
used to acquire 128 projections over 360with a resolution of
64 pixels. The emission and transmission acquisition times were
25 and 24 seconds per view, respectively. More details of the ex-
periment and parameters of the phantom are given by Beekman
et al.[19]. The emission projections were used to reconstruct the
attenuation map and the activity image by using the algorithm

suggested. No scatter correction was applied. The resolution of
the reconstructed image was pixels, , and

. The initial guess for the attenuation map was zero. The
reconstruction time was about 25 min. Note that the reconstruc-
tion time rapidly decreases for coarser images. For instance, re-
construction of a image required about 30 s. In such a
case, the time required for reconstruction of the attenuation map
by the algorithm suggested is comparable to the transmission
data acquisition time. Generally, the reconstruction time can be
considerably shortened by optimizing the source code of the al-
gorithm and using a faster computer. The reconstruction of the
attenuation map is shown in Fig. 11(a). Here, we can see that the
body contour and the lungs are reconstructed well. At the same
time, the spine was not reconstructed and the algorithm pro-
duced a noticeable error near the center of the image. Neverthe-
less, as seen in Fig. 11(b), the values of the attenuation map are
close to the expected ones, which can secure satisfactory com-
pensation for attenuation. This is demonstrated in Fig. 12(a),
where reconstruction of the activity image based on the esti-
mated attenuation map is depicted. These results can be com-
pared with an image obtained with a transmission-based atten-
uation map [Fig. 12(b)]. Both images were reconstructed by the
Tikhonov regularization method with parameter .
To minimize a possible influence of the errors in the center of
the estimated attenuation map, the activity reconstructions were
made on a 180sector of the projection data, using 64 views.
Fig. 12(a) and (b) demonstrate that sourceless attenuation cor-
rection provides the image comparable to that of the algorithm
using the attenuation map obtained from transmission measure-
ments. To evaluate the discrepancy between the images, a dif-
ference image, which is the magnitude of the difference of the
pixel values of the images, was computed (Fig. 13). As we can
see in Fig. 13, the difference of the images is maximal along
the boundary of the object. This can be explained by the fact
that the estimated attenuation map has a large error near the
boundary of the attenuator. Also, there is a certain discrepancy
in the heart region, which is, however, relatively small compared
with the values of the activity in this area. As seen from the in-
tensity profiles (Fig. 14), the peaks of activity in the heart coin-
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(a) (b)

Fig. 12. Reconstructions of the activity image of the anthropomorphic torso phantom: (a) reconstruction using the attenuation map estimated from SPECT
emission projections; (b) reconstruction using transmission-based attenuation correction.

Fig. 13. The difference image for the activity reconstructions obtained
by sourceless and transmission-based attenuation correction methods. The
grayscale is given in the number of counts.

Fig. 14. The intensity profiles across the reconstructions of the activity image
of the anthropomorphic torso phantom obtained with transmission-based
attenuation correction (dashed lines) and sourceless attenuation correction.

cide well in both images. A certain error appears in the region of
the background activity, where the image based on the estimated
attenuation map has slightly lower values of intensity. To make

Fig. 15. Circumferential myocardial profiles of the reconstructions obtained
with the transmission-based attenuation map (dashed lines) and the attenuation
map estimated by the suggested approach.

a more detailed quantitative comparison in the heart region, we
have computed the circumferential myocardial profiles, which
are shown in Fig. 15. Here, we can see that the discrepancy in the
heart region is not very large and lies in the range of 10%. This
means that the errors in the estimated attenuation map did not
cause excessive deviations of the activity in the heart region. It is
very likely that a further improvement of the image quality can
be provided by compensating for scatter and the point-spread
function while reconstructing the attenuation map. This may be
a subject for the future research.

V. CONCLUSION

A new method based on discrete consistency conditions has
been proposed for reconstruction of the attenuation map from
emission projections. It has been shown that this type of con-
dition can be written in the form of the orthogonal projection
onto the complement to the column space of the matrix of the
problem. A relation with the continuous consistency conditions
has been established. In spite of an evident parallelism between
the continuous and discrete cases, they provide different pos-
sibilities for solving the problem of reconstruction of the at-
tenuation map. The main difference between them is of that
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kind existing between the analytical method of the filtered back-
projection and the algebraic reconstruction technique. The dis-
crete consistency conditions can easily be adapted to an arbi-
trary scanning configuration. In particular, they can be used in
fully 3-D imaging and can be applied for both SPECT and PET
with an arbitrary data acquisition geometry. The discrete con-
ditions allow a relatively simple computer implementation by
means of factorization of the matrix. In this paper, we have ap-
plied fast algorithms of the QR and Cholesky decompositions
in combination with the Tikhonov regularization used for stabi-
lizing the Newton method. Concerning the computer implemen-
tation, we remark that the QR and Cholesky factorizations are
readily available in most mathematical software libraries. The
corresponding algorithms have been described elsewhere (see,
e.g., [20]) and are therefore not considered in this paper.

The algorithm has been evaluated with computer-generated
and experimental data. Problems of 2-D parallel-beam and 3-D
cone-beam SPECT cardiac imaging have been simulated. The
results of simulations demonstrated stable reconstruction of the
attenuation map with minimala priori knowledge. In partic-
ular, nonnegativity of the attenuation map was taken into ac-
count, and in some experiments, a known support of the func-
tion was assumed. The latter permitted the number of unknowns
to be considerably reduced in the problems with the high reso-
lution of the image and in the fully 3-D problem. No crosstalk
between the unknown source function and the reconstructed at-
tenuation map was visible. An experiment with an anthropomor-
phic torso phantom showed promising results in reconstruction
of the attenuation map of the thorax cross section characterized
by relatively large variations of attenuation. Promising results
have also been obtained in using the estimated attenuation maps
for sourceless attenuation correction in computer simulations as
well as in real data processing. At the same time, it should be
pointed out that the discrete consistency conditions algorithm
is not a method for simultaneous reconstruction of the activity
image and the attenuation map. The primary purpose of the sug-
gested method is to reconstruct the attenuation map from emis-
sion projections, whereas the source functioncan be seen as
a sort of “byproduct” of the particular numerical implementa-
tion of the algorithm. After the attenuation map is obtained, the
activity image can be found by other algorithms. This is illus-
trated in Section IV by several examples provided by applying
the Tikhonov regularization method with the regularization pa-
rameter different from that of the algorithm for computing the
attenuation map. Although we have considered a number of the
most important numerical examples, a single publication cannot
indeed cover all issues of studying the new approach. More work
will be required in assessing the clinical applicability of the dis-
crete consistency conditions. This future work should include
not only evaluation of the suggested method with different at-
tenuation correction algorithms, but also a detailed study of the
influence of various physical factors, such as counting statis-
tics, data acquisition geometry, scatter, point-spread function,
and partial volume effect.
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