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Reconstruction of Attenuation Map Using
Discrete Consistency Conditions

Andrei V. Bronnikov

Abstract—Methods of quantitative emission computed tomog- in the form of crosstalk between the activity image and the
raphy require compensation for linear photon attenuation. A attenuation map. Another approach involves finding the attenu-
current trend in single-photon emission computed tomography - ation map without reconstructing the activity image. In SPECT.
(SPECT) and positron emission tomography (PET) is to employ . . - . '
transmission scanning to reconstruct the attenuation map. Such the S|mple§t method .Of doing this is to apply e_m approximate
an approach, however’ Considerab|y Comp"ca’[es both the scanner ||near relat|0n that exists betWeen the attenuation map and the
design and the data acquisition protocol. A dramatic simplification data measured at two opposite positions of the scanner [11].
could be made if the attenuation map could be obtained directly The approximation, however, requires the assumption about

from the emission projections, without the use of a transmission yg|atjyely Jow attenuation, which restricts possible applications
scan. This can be done by applying the consistency conditions that

enable us to identify the operator of the problem and, thus, to of such a method. A more general app_roach G pr_oposed
reconstruct the attenuation map. In this paper, we propose a new by Natterer [12], who suggested applying the consistency
approach based on the discrete consistency conditions. One of theconditions for the range of the attenuated Radon transform
main advantages of the suggested method over previously usedto obtain the attenuation map from SPECT-type data. This
continuous conditions is that it can easily be applied in various method has been examined in several papers [13]-[16]. Es-
scanning configurations, including fully three-dimensional (3-D) tiallv. th ist diti . in the f ’ f
data acquisition protocols. Also, it provides a stable numerical sen 'f"l y, (e consistency condilions are given in the form ot a
implementation, allowing us to avoid the crosstalk between the functional that equals zero on the range of the operator of the
attenuation map and the source function. A computationally problem. This enables us to identify the operator, providing
efficient algorithm is implemented by using the QR and Cholesky that a function from its range is available. In particular, the
decompositions. Application of the algorithm to computer-gener- attenuation map, which is a parameter of the imaging operator
ated and experimentally measured SPECT data is considered. ' - '
can be found. An advantage of such an approach is that no
Index Terms—Attenuation correction, positron emission to- nformation about the unknown activity image is required
mography (PET), single-photon emission computed tomography 54 no attempt to reconstruct it is made. Certain difficulties
(SPECT). . .
appear if the data measured are not in the range of the operator
identified because of the noise, discretization errors, and other
|. INTRODUCTION physical factors that corrupt them. In combination with the

OMPENSATION for photon attenuation is one of théll-lp(i_sednesls of the lprpr?m, this c:uses mstablhtly gf t_lr}?
major issues in quantitative emission computed tomo ol 'OP un TSS.‘ rigu e.1r|zta 1on IprOC(tah ur.ﬁs ared app |et.. fe
raphy. Most state-of-the-art single-photon emission comput a ot regularization 1S to replace the 1ll-posed equation o

tomography (SPECT) and positron emission tomography (P bﬁ)roblem by a .nearby l\;vell-po_sdeddebquatlor:l. For msta.ncez a
systems provide transmission scanning capabilities, enabl 8 e reconstruction can be provided by such parameterization

us to reconstruct the attenuation map and use it for attenuat nthe problem that drastically decreases |ts_ dimension (see,
., [14]). As has recently been shown, this enables us to

correction. This method, however, complicates both the scanffe?

design and the data acquisition protocol. An alternative wayfl'gd the uniform elliptical attenuation distribution that is most

obtain the attenuation map is to reconstruct it directly from tt%ms's.’t?nt with the .measured .SPECT data [16]. At the same
e, it is also possible to restrict a number of the degrees of

emission data, which would greatly simplify the apparatus al? 4 ¢ th lution b ; lating th bl :
the measurement technique. Two general approaches to i om of the solution by reformulating the problem in a
iscrete setting. This motivated us to search for a new set of

problem have been discussed in literature. The first involv st diti that b lied to the di tizati
using alternating iterations between the activity image and thRNsistency conditions that can be applied to the discretization
the range of the operator.

attenuation map. Starting from a pioneering paper written t?y L . .
Censoret al. [1], several attempts to apply such methods have The approach suggested in this paper is fully based on a dis-

been reported [2]-[10]. However, in spite of limited succesﬁ{ete representation of the consistency conditions, rather than

methods of simultaneous reconstruction often cause artifa gir continuous description. This has several important conse-
quences. First of all, such an approach can easily be applied

with an arbitrary configuration of the scanner, and the use of
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sociate Editors responsible for coordinating the review of this paper and recdimportant advantage of our method. Secondly, unlike the con-

mending its publication were M. Defrise, and F. J. Beekman. __tinuous method, the discrete method enables us to take into ac-
The author is with KEMA, Arnhem 6800ET, The Netherlands (e-mail: an- . . . ..

drei@kema.nl). count the influence of various physical factors, such as finite de-
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siderably improve the accuracy of modeling. The discrete con-Let us assume that € H, whereH is a Hilbert space with
sistency conditions can easily be formulated for both SPEGTner product(, ). Let H stand for a closed subspace Bt

and PET imaging modalities. Finally, as is shown in this papérhen, any element can be represented as

the discrete consistency conditions provide a relatively simple

algorithm, whose stability can be controlled by the well-estab- g=g+gL (2)
lished method of Tikhonov regularization. We consider gen- . .

eral mathematical foundations of the consistency conditions aﬁherey € H is an orthogonal projection @iontoH and_gL €
demonstrate a relation existing between continuous and discrBté is an orthogonal projection of onto H-+, where A is
conditions. The discrete consistency conditions are formulaté orthogonal complement #; that is, a linear space whose
by means of orthogonal projecting onto the orthogonal complelements are orthogonal to any elementiofLet H = R(A,,)
ment of the column space of the matrix of the problem. We prend H- = R(A,)*, whereR(A,,) is the range of the integral
pose to compute the projector by using orthogonal decompogperator4,, andR(A, )" is the orthogonal complement to this
tions of the matrix, whereas a corresponding system of nonlinéange. The consistency conditions for (1) is then written in the
algebraic equations can be resolved by the Newton methé&erm

Such a numerical technique can be classified as an instance of a

general optimization approach suggested by Golub and Pereyra g1 =0. )

[17] for nonlinear least-squares problems whose variables sep-

arate. One of the central issues of their approach is the uséaviously, if (3) holds,g = g and (1) can be resolved with

a formula for the Frésche derivative of the orthogonal projectB#sPect tof. To apply(3), we need to consider the nullspace
[17]. In our previous paper [18], we have proposed a modificd(4,) of the adjoint operator. Becaugé(Ar,) = R(4,)",

tion of this formula for the case of the identification problem fogonditions (3) can be interpreted as the requirement of orthogo-
the attenuated Radon transform and applied the singular vaflity of g to N(A7), which can be written as

decomposition (SVD) for performing a numerical analysis of

the discrete consistency conditions. In this paper, we not only (Y, 901 =0 (4)

give a broader description and interpretation of the consistenc ) ) )

conditions, but also suggest a computationally advanced v&{1€rév is & nonzero solution of a homogeneous linear equa-
sion of the method, resorting to much more efficient QR arftP"
Cholesky decompositions, which makes 3-D reconstruction fea-
sible. The modified Golub—Pereyra formula obtained in paper
[18]is used here to compute the Jacobian matrix of the proble%.

Arp=0. (5)

We describe the corresponding algorithm and consider its duation (4) describes the consistency conditions for (1). For

plication to computer-generated and experimental data; for { 'oa;iegu;;igrizdzr:)gs:?cf)ornrg‘l;hle\lgtrt]grsetrfun;;%ﬂ;?:trate q
first time, reconstruction of the attenuation map from emissi jomntop v u y W

projections is demonstrated in the framework of cone-beam 3y the first time the use of (4) for reconstruction of fqnchon
SPECT imaging. u from the g data [12]—[14]. A nl_Jme_ncaI |mpler_nentat|c_m of
such a method requires algebraization of (4) with solving the
corresponding system of nonlinear equations by some iterative
[I. THEORY method.
A. Continuous Problem

Consider a general analytical description of the reconstru%‘— Discrete Problem

tion problem in SPECT (PET) imaging in the form of Discretization of (1) provides a system of algebraic equations
characterized by matrix,, € R™*", where a sampled atten-
A, f=g (1) uation map is given by vectgr € R, which plays the role of

the parameter of the matrix. In tomograpHly, is often referred
whereA,, is a linear integral operatoy, is the source function, t© @s the “projection matrix” whose entries can be computed by
and ¢ stands for the measured data. The attenuation misp USing a pixel (in 2-D) or voxel (in 3-D) representation of the
the parameter of the equatiofiand: are sufficiently smooth images (we will refer to voxels throughout this paper). For ex-
functions with finite support. Note that in SPECT reconstru@mple, the elements of matrik,, for the SPECT problem can
tion with two-dimensional (2-D) parallel-beam geometry, opeR€ computed as
ator A,, stands for the attenuated Radon transform. The recon-
struction problem in emission tomography is to find the source aij = oije Liier, HrTin (6)
function f with known ., and measured. In the present paper,
a problem of determination of the attenuation npaipom mea- whereg;; is the length of intersection of thgh ray with thejth
sured datg is considered. After obtaining functign the major voxel andk;; contains indexes of voxels that are intersected by
problem of reconstruction of can be resolved. One of thetheith ray onits segment between tftb voxel and the detector.
methods of obtaining. from theg data is to apply the consis- The source function and the attenuation map can be represented
tency conditions to the range of operatby. Let us describe the by images with different resolutions: we usevoxels for the
main principles of this approach. activity image and voxels for the image of the attenuation map.
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A number of equations should be greater than or equal to ttine continuous consistency conditions. Observe that the require-
number of the unknowns; therefore, we assume ment of orthogonality of to R(A4,,)* can be written as

m>n+l1 (7) P, 9="0 (12)

which means that matrix,, is rectangular. , where,, € R™ is a vector that is orthogonal to each column
Because the orthogonal projection can easily be fO””dé?matrixA - that is
/J/I

linear algebra by using the pseudoinverse, a direct application
of (3) is feasible in the discrete setting. Consider a system AT, = 0. (13)
A.f = g,f € R*,g € R™. The linear spac&®&™ can be wH
represented as a direct SRt = R(A,) & R(A,)*L of the
column spacei(4,,) and its orthogonal complemefR{(A4,,)*,
meaning that each vectgr € R™ can be written in a unique

Equations (12) and (13) are discrete counterparts of (4) and (5),
so that vector),, can be interpreted as a discrete counterpart

- = " of the ghost function used in the continuous consistency con-

way asg = g + g1, whereg € R(4,) andgy € R(4)™. itions. Because all vectors satisfying (13) form a complete or-

The system is consistentgf € £(A,,), which is equivalent to y,,normaj hasis foR(A,)L, vectors, is one of the vectors

g1 = 0 that coincides with (3). In contrast to the continuougs ¢,ch 4 basis. Therefore, (12) expresses nothing but a single
problem, here we can explicitly define the projectipn by equation from system (11). Thus, rows of projector maﬂl'lk

i X
means of the Moore—Penrose pse udomvc_aﬁtgeG .Rn ™ of can be interpreted as discrete counterparts of the ghost functions
matrix A,. Note that the pseudoinverse is routinely used if\saq in the continuous consistency conditions

numerical linear algebra to compute the least-squares SOIUtionEquation (12) has a minor independent role because the use
Foat ) of a single equation would require minimization of a function of
=l [ variables instead of solving a system of nonlinear equations as

; ; ; I the conditions given in the form of (11). This would require
Using the pseudoinverse matrix, the orthogonal project onsorg% . . . .
ng pseudoinv x g project computation of the Hessian matrix, whereas to resolve (11), it

mﬁ;ﬂlw tr;] eS?(?r(;r? afl,, and its orthogonal complement arewould be sufficient to compute the Jacobian matrix. Also, ana-
lytical differentiation of a single row may prove to be a problem,

9) in contrast with differentiation of the entire projector. This sug-
gests using (11) for numerical implementation. A corresponding

where algorithm is described in the next section.

g=P.g,  gL=Plyg

P, =A,A" Pr=I-A,Af (10) Ill. METHOD

fT

arem x m matrices of the orthogonal projectors ahds the A Computation of the Projector

identity matrix. Projectord’, ande are idempotent matrices; To implement the discrete consistency conditions, the pro-
that is, P? = P, and(P)? = P;. Matrix P is singular. jector P;- has to be computed. This can be done in different
Using the definition of the orthogonal projector, the discretways. The most straightforward approach is to use the pseu-

consistency conditions can be written in the form doinverse matrix as in (10), which is perhaps the worst thing
to do because of cumbersome and lengthy computations. The
Pjg =0. (11) use of orthogonal decompositions provides much faster solu-

tions. For instance, the Gram—Schmidt orthogonalization can be
Equation (11) describes a system of nonlinear equations thakd to explicitly compute a basis for the column space of the
can be resolved with respect to vectorAccording to its def- matrix. This method requiresin? flops. Another approach is
inition, projectoer degenerates into the zero matrix whefo apply the SVD, where the left singular vectors form an or-
the pseudoinverse coincides with the right inverse. This is tifonormal basis for the column space; this algorithm has a com-
case when matrixi,, is a square matrix of a full rank. Thus,plexity of 7mn? — n® flops. A good alternative is provided by
the farther the matrix is from the square matrix of a full rankhe QR decomposition of the matrix. The QR decomposition re-
the stronger condition (11) will be. This emphasizes the role gfiires a minimal number of operations, which can be estimated
condition (7), suggesting that the data vector has to have mugdynn? — #3/3 flops. In the QR decomposition, the matrix is
larger dimension than that of the searched vector. The questiepresented as
of how large it must be was studied in [18], where the singular
values of the Jacobian matrix of (11) were computed for fixed A =0 <R> (14)
n = [ and variable values of:. Using computer-generated e 0
data, it was shown that for some particular problem, the choice
m = 1.5n caused poor conditioning of the problem, whereas tlehere Q@ € R™*™ is the orthogonal matrix an& is upper
casem = 3n demonstrated satisfactory behavior of the singulétiangular with nonnegative diagonal elements. Matpxcan
values, which, however, did not improve much for any> 3n. be partitioned a§} = (Q1, Q2), where}; € R™*"™ and@), €

The discrete formulation of the problem permits a discref®™*(™—") The columns of); andQ, form orthonormal bases

version of (4) to be found. This provides a connection witfor the column space of matrid,, and its complement. Thus,
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the pseudoinverse matrix j$j = R7'Q/, and the projectors in the next paragraph. Also, note that the computation of the Ja-

are cobian matrix involves finding the least-squares solutforin
- n - this way, the algorithm suggested provides reconstruction of the
Pu=iQr, FPr=Q0Q,. (15)  source function as well. At the same time, the activity distribu-
tion is represented here vigand: as in (8), and the residual
B. Reconstruction Algorithm g1 of the method is minimized with respect to vectoalone,

A solution of the nonlinear svstem of (11) can be found bwhich makes our approach different from the methods of simul-
the iterative search algorithm sﬁch that 11) Mneous reconstruction ¢fand.., where both vectors explicitly

9 contribute to minimization of the residual. In combination with
WM =c (u(k—l) _ Au) (16) the regularization, this allows us to avoid the crosstalk between

the source function and the attenuation map. It should be pointed
whereAy € R is the step size of the algorithr! denotes a out that our algorithm may not provide an optimal reconstruc-

nonlinear operator that enables us to impose certain constralfffg Of /. because the choice of its parameters is aimed at stable
on the attenuation map. For example, in the case of the ndfconstruction qf 'the attenuation map in the first place. Hoyv-
negativity of function, the jth element of vecto”; can be ever, after obtaining the attenuation map, the source function

represented by can be found by any method that is better suited for this. For
instance, as shown in Section 1V, the Tikhonov method with an
(Cp); = { g, 0f gy >_0 optimally chosen regularization parameter can also be used. An-
J 0, otherwise other interesting observation is that matf, has to have zero

. . . 4th row if g; = 0, Il correspondirfg. k € K;,; hav
Information about values of the attenuation coefficient for dn@-t 0 g .0 _because_ all correspondiffy, k € Ky; ha €
0 be zero. This information can be used to reduce the size of

ferent tissues can be incorporated into the algorithmin a simit r . .
o . () S e problem by removing zero rows of matik, and forming
way. The initial estimate:'”’ can be set to zero or ampriori

. ; . . vector g with nonzero data. This has a clear practical explana-
known approximation. In each stép matrix A,, is computed g P b

by formula (6), its OR decomposition (14) is performed, ant(ljon: no information on the attenuation map is available in the

L . f ission.
vector Ay of the step size is obtained by the Newton metho&?se of zero emission

which requires solving equation C. Regularization

JuAp =gy (17) In each step of the algorithm, two systems of algebraic equa-
tions have to be resolved. First, the least-squares soliitas

to be computed, and second, a solution of system (17) has to

g1 = Q01 g be found. We have studied sevgral different methods for solving

these problems. The most straightforward method would be to

andJ,, is the Jacobian matrix of the problem. The Jacobian mapply an iterative technique similar to the algebraic reconstruc-

where

trix can be found as tion technigue (ART). However, such methods failed to provide
- sufficient quality of the solution. The reason of that was poor

Ju =—Q2Q3 B, (18) conditioning of the Jacobian matrix, which is singular because

wWhere of the projector. This caused a slow convergency or instability

of iterative methods. At the same time, implementation of reg-
B. — <8Au faAu Fo 9A, f) ularization procedures presents certain difficulties in such ap-
" py  Ous O proaches. The use of combined algorithms, whfeiseapproxi-

mated by a fast iterative method and system (17) is resolved by
an orthogonal decomposition of its matrix, did not give a desired
result, because the iterative method failed to provide the accu-
bi; = —0i Z Frain (19) racy required for computing_the entries of the chobian matrix.

It has been found that the Tikhonov regularization method can
provide a sufficient quality of the solution.
whereK;; contains indexes of voxels that are intersected by theThe idea of Tikhonov regularization is to approximate the
ith ray on its segment between tjih voxel and the boundary |east-squares solution in a stable way. This can be achieved by
of the support of the source function on the side opposite to thfnimization of the following functional:
detector.

A few remarks on the algorithm are in order. First, note that llgr — JuApl® + af L1 Apl? (20)

the Jacobian matrix contains the projeafy(, . Because)-
is anm x (m—n) column-orthogonal matrixQ»QJ isamxm whereL; is anl x I matrix approximating the Laplacian and
matrix with rankm — n, which makes the Jacobian matrix sin« > 0 is the regularization parameter. The second term of func-
gular by its construction. This reflects the fact that determinatigional (20) is called the “stabilizing functional.” Its role is to
of the attenuation map from emission projections is a severayppress instabilities in the solution, providing a certain degree
ill-posed problem. To find a stable solution of such a problem,ai smoothness that is controlled by the value of the regulariza-
regularization is required. We discuss the regularization methtion parameter. The regularization parameter has to be chosen

is anm x [ matrix andu; stands for thgth element of vectop
[18]. Using (6), the entries of matrig,, are computed as

kEIS’{j
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(@) (b)

Fig. 1. (a) The numerical phantom of the source and (b) the attenuation map, simulating cardiac SPECT imaging.

01861

attenuation coefficient c¢cm-1
o (o) (=] (o] (=]
o o o 2 . .
L (o) [e5] —_ a I
¢,

o

=

Ko
T

(=)

10 15 20 25 30 a5 40
positicn  ¢m

(@) (b)

Fig. 2. Reconstruction of the attenuation map from noisy emission projections computed for the numerical phantom: (a) the reconstructed inti@ge afitre
map and (b) the attenuation coefficient versus the position across the numerical phantom and its reconstruction. The reconstruction washoptaaredtesis
a = 0.004 and3 = 0.01; the initial guesg:(® was zero.

o
m

in accordance witla priori level of the error in the data. How- regularization parameter). Then, this system is resolved by ap-
ever, because of the large size of the problem, a procedure tying the Cholesky factorization, and the regularized solution
estimation of the regularization parameter is not feasible hep.is used in (19) instead of the least-squares solution. Thus, in
We assume that the value of the regularization parameter carebeh iteration of the algorithm, we compute one QR decompo-
found by trial and error using computer simulations of smalleition ofm x n matrix A,, and two Cholesky factorizations: first
problems. The minimizer of functional (20) is given as a solwe compute the factorization of anx » matrix to find vectorf
tion of system and then the factorization éfx [ matrix 7 to resolve system
N T (21). After the attenuation map is reconstructed, the final recon-
TpAn=J,91 (1) struction of the source function can be made by solving system

where7¢ = aL| L1+J,] J, is ani xI symmetrical matrix. The (22).
choice of the regularization parameter has to ensure that matrix
J is positive definite. The most efficient method of solving
systems with positive-definite symmetrical matrices is based &n Computer Simulations

the Cholesky factorization. We apply the Cholesky factorization To evaluate the approach, computer simulations of SPECT

j; - RT_R’ vthereR IS an u_p_per-trlangular matrlx_. _SyStemimaging were carried out with a mathematical torso phantom.
R RAp = J, g1 can be efficiently resolved, providing the, 6 first set of experiments, a 2-D problem with a relatively
regularized solutiom\ i, which is used to update the Vecton,;qp, resolution of the image was studied. The second study was
of the attenuation map in (16). The same approach is usedjiQ qteq to 3-D cone-beam reconstruction. Let us first consider
approximate the least-squares solutjorfirst, system the 2-D problem. The numerical phantom simulated a cross sec-
(/3L2TL2 + A;LFAH) f= A;TLQ (22) tion through t_h_e thorax. The source was modeled as a ring rep-
resenting activity in the heart and an ellipse representing back-
with a positive-definite symmetrical matrix is formed. (Hekg, ground activity in the human body [see Fig. 1(a)]. The back-
is ann x n matrix approximating the Laplacian afgd> 0 isthe ground activity was 10 times less than was the activity in the

IV. RESULTS
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(b) (©

Fig. 3. Reconstruction of the attenuation map with different regularization parameters=(@)0005, 3 = 0.01; (b) « = 0.004, 3 = 0.0005; (c) « = 0.008,
8 = 0.01.

@) (b)

Fig. 4. Reconstruction of the attenuation map with different initial approximations: (a) all components ofiWé¢tare set to 0.1; (b) all components of vector
() are set to 0.3. The reconstructions were made with parameters).004, 3 = 0.01, andk = 3.

heart. The attenuation map was represented by two ellipses@®cessor. Parameters = 0.004 and 5 = 0.01 were used.
sociated with the lungs, a small circle for the spine bone andrae initial guess for the attenuation map was zero. As seen
large ellipse for the body contour [see Fig. 1(b)]. The major axisom Fig. 2(a), the use of regularization provides a smooth
of the ellipse representing the body was 30 cm. The attenuatfonction of the attenuation map, but at the same time, the
coefficient was equal to zero for air, 0.04 thfor the lungs, lungs, the spine, and the body contour are clearly seen and
0.15 cnt! for the soft tissue, and 0.27 crh for the spine. For the reconstructed image corresponds well to the phantom.
characteristic functions of the ellipse, the linear integrals c&o crosstalk between the attenuation map and the source
be evaluated analytically. We applied such a formula to corfunction is visible. To make a more quantitative comparison,
pute emission projections of the phantom. Sixty views ovef 36ve have depicted the profiles across the phantom and its
were simulated with 64 pixels in each view. To more accuratefgconstruction in Fig. 2(b). Here, we can see that the values
represent a practical situation, Poisson noise was added todhghe attenuation map are reconstructed satisfactorily. To
data, so that the NMSE of the projections was about 8%. Thwestigate the influence of the regularization parameters and
total number of counts in the projection data wesx 10°. No the initial approximation, several computer experiments were
photon scatter was simulated. The body contour was assumeale. Fig. 3 depicts the results obtained in an experiment with
to be known. Precisely, the support of the source function wesee different sets of the regularization parameters. Here, we
computed by using positions of nonzero data. This proceduwan see that the decrease of paramateeduces the stability
provided a mask that was used for both the source function asfdthe reconstruction in the heart region [Fig. 3(a)]. This
the attenuation map. The images were sampled @4tlx 64 instability is similar to the crosstalk of the images reported
pixels, but there were only = [ = 1177 pixels within the for the similar phantom by Manglos and Young [3]. The
support of the functions to be reconstructed. All zero line intéastability in the heart region also develops for the smaller
grals were omitted, so that the data vector had the dimensiorvafue of parameted [compare Fig. 3(b) and Fig. 2(a)].
m = 2492. Fig. 3(c) shows the case in which both parameters are large
Fig. 2(a) shows the attenuation map reconstructed aftsrough to provide the stable reconstruction with no crosstalk.
using £ = 3 iterations of the algorithm. The reconstructiorComparing images in Fig. 3, we may conclude that the
required about 10 min on a PC with a Pentium Il 450-MHgtability of reconstruction in the heart region is strongly
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Fig. 5. Functionfs(8 = 0.01), which was used for computing the Jacobian matrix in the final step of the algorithm: (a) the grayscale image; (b) the intensity
profiles across the numerical phantom and funcifgn
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Fig. 6. Reconstruction of the activity distribution using attenuation correction provided by the attenuation map as in Fig. 2: (a) the recomstgecte#d
the activity distribution; (b) the intensity profiles across the numerical phantom and its reconstruction. The reconstruction was made bthapfiktiogov
regularization method with parametér= 0.00001.

dependent on the choice of both regularization parametdtss can be the divergence of the Newton method in the case
The values of the parameters must not be too small. At a relatively large residual of the problem.

the same time, excessively large values of the regularizationAlthough the main goal of this paper is to describe a method
parameter may introduce errors in quantitative determinatifor determination of the attenuation map, it is interesting to see
of the attenuation coefficients. Thus, the strategy for tHew estimation of the attenuation map influences reconstruc-
choice of the regularization parameters must include a tradetidin of the activity image. First of all, let us demonstrate the
between the error in quantification of the attenuation map aadtivity distribution that was found as a “byproduct” of our al-
the instability in the form of the crosstalk of the imagesgorithm. Fig. 5 demonstrates functigiy, which was used for
the regularization parameters can be found by trial and erroomputing the entries of the Jacobian matrix in (19) of the algo-
In the next computer experiment, the influence of the initialthm. This function was obtained in the final step of the algo-
guess was considered. First, all components of vegf8t rithm, and therefore, it corresponds to the attenuation map as in
were set to 0.1. Using the same parameters of the algoritlfig. 2(a). We can see that the use of the Tikhonov regularization
as for the reconstruction with the zero initial guess [Fig. 2(a)lethod provided a relatively smooth reconstruction with accu-
we obtained the image depicted in Fig. 4(a). Here, we caate estimation of the background activity. The level of intensity
see that the reconstruction is stable and the values of thahe heart region is, however, lower than that of the phantom.
attenuation coefficients are slightly improved as comparédevertheless, this function allowed us to compute a stable re-
with the case of the zero initial guess. Setting the componegtmnstruction of the attenuation map with no crosstalk. It should
of the initial vector to 0.3, the image shown in Fig. 4(b) wabe pointed out that having the attenuation map, any reconstruc-
obtained. As seen from this figure, the algorithm has divergéidn method can be used to find the activity image. Depending
for this choice of the initial guess. A possible explanation ain the method and its parameters, different activity images can
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(b)
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Fig. 7. Results for the numerical phantom, simulating the myocardial defect: (a) the phantom of the activity image; (b) reconstruction of ttemattepuaing
discrete consistency conditions; (c) reconstruction of the activity image with attenuation correction using the true attenuation map a3;itdiFrgcbftistruction
of the activity image with attenuation correction using the estimated attenuation map as in Fig. 7(b).

160

be found for the same attenuation map. This is illustrated in
Eig. 6, where the results of applying the Tikhonov regulariza- 4, //}\\7\/\/\\/
tion method based on (22) are shown. The value of the regular-
ization parametef was here 1000 times smaller than that for 120
the reconstruction as in Fig. 5. Therefore, good spatial resolution
was achieved. As seen from Fig. 6(b), the peaks of the intensity
in the heart region are resolved well and the values of the inten—% sol
sity are close to those of the phantom. Note that the use of theg
small value of the regularization parameter caused the amplifi- 60}
cation of noise in the background area. The profiles across the
phantom and the reconstructed image [Fig. 6(b)] show that sat- 40
isfactory compensation for attenuation has been achieved. The
absolute error in determination of activity in the heart area is in
the range of 8%, which corresponds well to the discrepancy of 0
the data.

To compare our results with those obtained by using other
methods, we have considered another numerical phantdig, 8. Circumferential myocardial profiles of the reconstructions obtained
which was slightly different from the previous one, comprisinﬁ“h the true (dashed lines) and estimated attenuation maps.
the myocardial defect. The activity image of this phantom is
similar to that in [6]. The heart was represented by the rirgigs. 7(b) and 2(a)], the reconstruction is stable and no trace
with two levels of intensity: 150 counts/pixel for the normabf the crosstalk is visible. We remark that our reconstruction
myocardium and 75 counts/pixel for the myocardial defeavas obtained under far fewer conditions than in [6], in which
The attenuation map was as in Fig. 1(b). For reconstructiameasurements with two different energies were requiredsand
of the attenuation map, we used the same parameters aspfiori information of constant attenuation was used to suppress
the reconstruction presented in Fig. 2(a). Despite certdlme crosstalk by assigning large penalties to the cost function in
differences in the reconstruction of the attenuation map ftire heart region. The comparison with the activity reconstruc-
the phantom with and without the myocardial defect [compat®n based on the true attenuation map is given in Fig. 7(c) and
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Fig. 9. Simulation of 3-D cone-beam SPECT imaging. The upper row: seven representative axial slices of the 3-D numerical phantom of activitye The midd
row: axial slices of the 3-D numerical phantom of attenuation. The lower row: reconstruction of the attenuation map from cone-beam SPECT grttisios pro

(d). Fig. 7(c) shows the source function reconstructed with the
true attenuation map by the Tikhonov regularization method
with 3 = 0.0005. The same method was used to reconstruct
the image based on the estimated attenuation map [Fig. 7(d)].
Both images correspond well to the phantom and have rel-
atively small differences. The image obtained with the true
attenuation map has slightly more homogeneous background
activity, especially near the boundary of the object. This can ==
be explained by the fact that the true attenuator has the abrupt =
edge, whereas the estimated attenuation map has a roll-off
of the values near its boundary. To make a more quantitative
comparison, we used the circumferential myocardial profiles
as shown in Fig. 8. Here, we can see that both reconstructions
coincide well, having a deviation of no more than 10%. The
activity image obtained with the estimated attenuation majy. 10. The Jasczack anthropomorphic torso phantom. The photograph is by
has slightly lower values than does the image based on fiqrtesy of Data Spectrum Company.
true attenuation map. This can be explained by the fact that
the estimated attenuation map has lower values because offthe background activity was 10 times less than was the activity
regularization. Nevertheless, Figs. 7 and 8 demonstrate thatithéhe hot spots. The middle row represents the 3-D attenua-
suggested method provides results similar to those obtainedtiop map. Here, we see the lungs, the spine, and the area of
using the true attenuation map. the tissue around the liver. The attenuation coefficients of the
One of the most attractive features of the discrete conspghantom were the same as those of the 2-D phantom. The data
tency conditions is that they can easily be applied for fully 3-Were reconstructed by using the algorithm suggestediniti
imaging. We have simulated an experiment with 3-D cone-beatarations andv = 0.01, 5 = 0.05. The initial guess for the
SPECT imaging using a circular scan. In this experiment, tladtenuation map was zero. The lower row in Fig. 9 shows the
focal point of the converging collimator was rotated with theeconstruction of the attenuation map from simulated emission
radius of rotation of 40 cm. The size of the 2-D detector wasojections. As seen from the first and the last image in the row,
40 x 40 cm, and the focal length of the collimator was 60 cnrmonzero values were reconstructed in the area where the actual
The projection was sampled witld x 64 pixels, and 60 views attenuation map was zero. This can be explained by the influ-
over 360 were computed. To reduce the size of the problerance of the oblique rays in the cone-beam geometry, which sug-
we used a coarser grid for reconstruction and applied a magdsts that different slices in the reconstructed image influence
computed by using nonzero values of the projections. This gas@ch other. We can also see that the reconstruction of the at-
n = [ = 2946 andm = 15978, so that about 350 Mb of com- tenuation map is strongly dependent on the configuration of the
puter memory was required. Fig. 9 demonstrates seven remedrce. For instance, the slices through the heart are similar to
sentative axial slices of the 3-D phantom and its reconstructighe reconstruction obtained in the case of parallel-beam geom-
The upper row in Fig. 9 shows the phantom of the activity digtry. Here, we see the area of the lungs and the area of the con-
tribution. Two hot spots were located in the heart and the livestant attenuation. The attenuation coefficient is close to that of
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Fig. 11. Reconstruction of the attenuation map of the anthropomorphic torso phantom: (a) the reconstructed image of the attenuation mamualidthe atte
coefficient versus the position across the reconstruction of the attenuation map.

o

the phantom. However, the quality of reconstruction deterioratesggested. No scatter correction was applied. The resolution of
in the slices where no sources are present, except those ofthieereconstructed image wés x 64 pixels,a = 3 = 0.01, and
background or a single point source. Such slices are shownkir= 3. The initial guess for the attenuation map was zero. The
the fourth and fifth images from the left-hand side in the loweeconstruction time was about 25 min. Note that the reconstruc-
row. In the slice with the point source, the attenuation map cotien time rapidly decreases for coarser images. For instance, re-
tains an error within the area of the source. The values of the @énstruction of 82 x 32 image required about 30 s. In such a
tenuation coefficient are too small there. This problem is mugase, the time required for reconstruction of the attenuation map
worse in the next slice (the image in the middle of the lowejy the algorithm suggested is comparable to the transmission
row). Here, we see a large error in the reconstruction of the ahta acquisition time. Generally, the reconstruction time can be
tenuation map. Itis interesting to note that this image has a sysansiderably shortened by optimizing the source code of the al-
metrical pattern (except the area of the spine, which was slighgrithm and using a faster computer. The reconstruction of the
emphasized). This kind of error can be explained by the fact thatenuation map is shown in Fig. 11(a). Here, we can see that the
the problem has no unique solution in the case of symmetrigdy contour and the lungs are reconstructed well. At the same
functions f and [13]. Both functions are almost symmetricakime, the spine was not reconstructed and the algorithm pro-
here, which might cause the error in the given slice and detfiiced a noticeable error near the center of the image. Neverthe-
riorate the neighboring areas as well. For instance, in the ngids as seen in Fig. 11(b), the values of the attenuation map are
slice, we can see that in spite of the presence of an asymmetriggke to the expected ones, which can secure satisfactory com-
source, the reconstruction of the attenuation map still contaigsnsation for attenuation. This is demonstrated in Fig. 12(a),
certain artifacts with a symmetrical structure. Nevertheless, ggere reconstruction of the activity image based on the esti-
presence of a strong source (the liver) provides a satisfactory §&siaq attenuation map is depicted. These results can be com-
construction of the average value of the attenuation coefficiegh e with an image obtained with a transmission-based atten-
showing no crosstalk in the form of low atten_uatlon, which Sation map [Fig. 12(b)]. Both images were reconstructed by the
one of the advantages of the suggested algorithm. Tikhonov regularization method with parameter= 0.0005.

To minimize a possible influence of the errors in the center of
the estimated attenuation map, the activity reconstructions were
In the last study, we used experimental data obtained at thade on a 180sector of the projection data, using 64 views.
Utrecht University Hospital by applying a SPECT measuremehitg. 12(a) and (b) demonstrate that sourceless attenuation cor-
system to the Jasczack anthropomorphic torso phantom [seetion provides the image comparable to that of the algorithm
Fig. 10]. The phantom contains different features, such as lungsing the attenuation map obtained from transmission measure-
and spine, and enables us to simulate activity in the heart, liverents. To evaluate the discrepancy between the images, a dif-
and tissue. The phantom was filled with Tc-99m; the amount tdrence image, which is the magnitude of the difference of the
activity in the left ventricle was 18 MBq, and the backgroungixel values of the images, was computed (Fig. 13). As we can
contained 84 MBg. A standard SPECT imaging system waee in Fig. 13, the difference of the images is maximal along
used to acquire 128 projections over 3&Gith a resolution of the boundary of the object. This can be explained by the fact
64 pixels. The emission and transmission acquisition times wehat the estimated attenuation map has a large error near the
25 and 24 seconds per view, respectively. More details of the d&doundary of the attenuator. Also, there is a certain discrepancy

periment and parameters of the phantom are given by Beeknirathe heart region, which is, however, relatively small compared
etal.[19]. The emission projections were used to reconstruct téth the values of the activity in this area. As seen from the in-
attenuation map and the activity image by using the algorithiensity profiles (Fig. 14), the peaks of activity in the heart coin-

B. Experimental Data
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Fig. 12. Reconstructions of the activity image of the anthropomorphic torso phantom: (a) reconstruction using the attenuation map estimate@Trom SP
emission projections; (b) reconstruction using transmission-based attenuation correction.
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Fig. 15. Circumferential myocardial profiles of the reconstructions obtained
Fig. 13. The difference image for the activity reconstructions obtaina}jith the _transmission—based attenuation map (dashed lines) and the attenuation
by sourceless and transmission-based attenuation correction methods. AR estimated by the suggested approach.
grayscale is given in the number of counts.
a more detailed quantitative comparison in the heart region, we
have computed the circumferential myocardial profiles, which
are shownin Fig. 15. Here, we can see that the discrepancy in the
heart region is not very large and lies in the range of 10%. This
means that the errors in the estimated attenuation map did not
cause excessive deviations of the activity in the heart region. Itis
very likely that a further improvement of the image quality can
be provided by compensating for scatter and the point-spread
function while reconstructing the attenuation map. This may be
a subject for the future research.
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V. CONCLUSION

/ . . ,,//\ A new method based on discrete consistency conditions has
0 10 20 30 40 50 been proposed for reconstruction of the attenuation map from
position — cm emission projections. It has been shown that this type of con-
Fig. 14. The intensity profiles across the reconstructions of the activity imaQ&IiOﬂ can be written in the form of the orthogonal projection
of the anthropomorphic torso phantom obtained with transmission-basento the complement to the column space of the matrix of the
attenuation correction (dashed lines) and sourceless attenuation correctionprob|em_ A relation with the continuous consistency conditions
has been established. In spite of an evident parallelism between
cide wellin both images. A certain error appears in the regiontife continuous and discrete cases, they provide different pos-
the background activity, where the image based on the estimasgédllities for solving the problem of reconstruction of the at-
attenuation map has slightly lower values of intensity. To makenuation map. The main difference between them is of that
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kind existing between the analytical method of the filtered back- ACKNOWLEDGMENT
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fully 3-D imaging and can be applied for both SPECT and PEIomorphic phantom data and the anonymous reviewers for their
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means of factorization of the matrix. In this paper, we have ap-
plied fast algorithms of the QR and Cholesky decompositions
in combination with the Tikhonov regularization used for stabi-
I|Z|pg the Newton method. Concerning the computer'lmplemen-[l] Y. Censor, D. Gustafson, A. Lent, and H. Tuy, “A new approach to the
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ular, nonnegativity of the attenuation map was taken into ac-[5] J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L. Mortelmans, and P.
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tion was assumed. The atter_ permitted the number ot UNKNOWNS  vjeqd. Imag, vol. 18, pp. 393-403, 1999.
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