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ABSTRACT

Phase-contrast x-ray computed tomography (CT) is an emerging imaging technique that can be implemented
at third generation synchrotron radiation sources or by using a microfocus x-ray tube. Promising experimental
results have recently been obtained in material science and biological applications. At the same time, the lack of
a mathematical theory comparable to that of conventional absorption-based CT limits the progress in this field.
We suggest such a theory and prove a fundamental theorem that plays the same role for phase-contrast CT as
the Fourier slice theorem does for absorption-based CT. The fundamental theorem allows us to derive fast image
reconstruction algorithms in the form of filtered backprojection (FBP).
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1. INTRODUCTION

Conventional x-ray computed tomography (CT) is based on the difference in radiation absorption by different
tissues. At the same time, a wide range of samples used in biology and medicine demonstrate very weak absorption
contrast, nevertheless producing significant phase shifts in the x-ray beam. The use of phase information for
imaging purposes is therefore a suitable alternative here. Utilizing phase contrast also has attractive sides
itself: first, refractive properties of the medium can be studied, rather than its absorption properties, as done in
absorption-based CT and secondly, it may help to diminish the total absorbed dose, enhancing the conditions of
the entire imaging procedure.

In this paper we present a mathematical theory which lays down the foundations of quantitative phase-contrast
CT, making accurate reconstruction of phase-contrast data as easy as in conventional CT. The suggested theory
requires no intermediate step of phase retrieval and provides direct reconstruction of the refractive index from
the intensity distributions measured in a single plane of the near field region. In the case of a mixed phase and
amplitude object, the data in the contact print plane are required as well. The theory is based on a fundamental
relation between the three-dimensional (3D) Radon transform of the object function and the two-dimensional
(2D) Radon transform of the phase-contrast projection that is established in the form a fundamental theorem.
Using this theorem, reconstruction algorithms can be derived in the form of filtered backprojection.

2. PHASE-CONTRAST IMAGING

Phase-contrast images can be obtained by implementing the Gabor’s principle of in-line holography [1]. Pure
absorption contrast, which is used in conventional CT, is observed only in the contact print plane (i.e. when the
distance z of the object to the image plane is zero), whereas phase contrast due to diffraction of x-rays occurs
throughout the entire Fresnel diffraction region (see Fig. 1). To acquire a phase-contrast image it is sufficient to
place a detector away from the object. An experimental setup can be built on a synchrotron radiation source or
on a microfocus x-ray tube [2-5].

A mathematical model of inline phase-contrast imaging is given by the Fresnel propagator. The intensity
distribution at distance z from the object can be represented by

Iz
θ (x, y) = |hz ∗ Uθ|2, (1)
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Figure 1. The principle of inline phase-contrast imaging. The projection images of the computer phantom of the spheres
are shown for different positions of the detector along the z axis.

where hz(x, y) is the Fresnel propagator, the asterisk denotes two-dimensional convolution and Uθ is the wavefield
downstream of the object at the observation angle θ. Supposing that the detector is in the near field of the Fresnel
region:

λd << D2 (2)

(where λ is the wavelength, d is the distance of the detector to the object and D is the size of the object) and
absorption µ is weak and slowly varying, for the small distance d we may write :

Id
θ (x, y) = I0

θ (x, y)
(

1− λd

2π
∇2ϕθ(x, y)

)
, (3)

where I0
θ (x, y) is the intensity in the contact print plane and ϕθ(x, y) is the phase function. Eq. (3) establishes

a linear relation between the phase function and the measured intensity data. If Eq. (3) holds, then the
fundamental theorem relating the object function to the intensity measured at distance d can be established.

3. CONVENTIONAL CT AND FOURIER SLICE THEOREM

The problem of conventional absorption-based CT is to reconstruct a 3D distribution of the attenuation coefficient
µ from the projection data. Mathematical theory of conventional CT is based on the so-called ”Fourier slice
theorem”. Let ĝθ(ξ, η) be the Fourier transform of the projection at the angle θ. Then

µ̂θ(ξ, η) = ĝθ(ξ, η) (4)

is the Fourier transform of the attenuation coefficient in the plane that intersects the origin and is parallel to the
detector plane. This simple result allows one to find the Fourier transform of the object function by covering
the complete Fourier space with the planes positioned at the angles 0 ≤ θ < π. However, the implementation
of such an algorithm requires transformation from the polar to Cartesian coordinate system and therefore is
not straightforward. It can be shown that after some calculations, the Fourier slice theorem gives a simple
algorithmic result in the form of a convolution (denoted by the asterisk) and the backprojection operator:

µ(x1, x2, x3) =
∫ π

0

dθ r ∗ gθ, (5)



Figure 2. Illustration of the geometry used in the fundamental theorem. The 2D Radon transform of the phase-contrast
projection is computed by integration along the lines on the detector; the 3D Radon transform of the object function is
computed by integration over the corresponding planes.

where r is the reconstruction filter and following the convolution arguments x and y of function r∗gθ are replaced
by x = x1 cos θ + x2 sin θ and y = x3, respectively. The filter function r has a simple structure R(ξ) = |ξ| in
the Fourier domain and is often called ”the ramp filter”. The ramp filter needs some regularization at the high
frequencies where it can amplify the unwanted high-frequency noise.

4. INVERSE PROBLEM IN PHASE-CONTRAST CT

In phase-contrast CT, the data function is computed as

gθ(x, y) = Id
θ (x, y)/I0

θ (x, y)− 1, (6)

where Id
θ (x, y) is the intensity distribution at a sufficiently small distance z = d and I0

θ (x, y) is the intensity in
the contact print plane. Using gθ(x, y) as the data for Eq. (5) we can reconstruct an approximation to the phase
object function that is known to be a function proportional to the Laplacian of the object function. Indeed, this
function will represent only the edges of the true image, giving no quantitative information. To reconstruct the
object function quantitatively, a suitable mathematical model has to be applied. In this way, a formula similar
to Eq. (5) has to be found using the apparatus of the Fresnel transform.

The reconstruction problem in quantitative phase-contrast CT is to find the object function f(x1, x2, x3)
from measured values of intensity Iz

θ (x, y), 0 ≤ θ < π. A number of methods for solving the inverse problem of
phase-contrast CT has been suggested in the literature. These methods can be divided into two groups: a) the
methods that require phase retrieval; b) direct methods. A typical example of the phase retrieval method is the
holotomography method suggested by Cloetens et al [5]. Several planes of intensity measurements are used here
to find the phase distribution. After that the object function is computed by inverting the Radon transform. A
direct method that requires no phase retrieval was suggested by the author in [6]. Here the object function (the
distribution of the index of refraction of the object) is found directly from the intensity data. Modifications of
this method were developed later in [7-11]. For reconstruction of the phase object the direct method requires a
measurement of intensity in a single plane of the near field. The data are processed in a way similar to that of
conventional CT. The theoretical background of this approach is given by the theorem presented below.



Figure 3. Reconstruction of the phase object by the suggested algorithm. No phase retrieval is required; a single detector
position in the near field of the Fresnel region is sufficient.

5. FUNDAMENTAL THEOREM OF PHASE-CONTRAST CT

In order to find an analytical solution to the inverse problem of phase-contrast CT, we make certain approxima-
tions that hold in the near field of the Fresnel region (see [7] for details). Using the hat for notations of 2D and
3D Radon transforms, we present the main result in the form of the following

Theorem
Let the data function be given by Eq. (6) and the conditions of Eqs (2) and (3) hold, then

∂2

∂s2
f̂(s, θ, ω) =

−1
d

ĝθ(s, ω). (7)

The theorem shows the relationship between the measured intensity of the x-ray beam downstream of the object
and the index of refraction of the object. The theorem has a structure reminding that of the Fourier slice
theorem in conventional CT, but instead of the Fourier transform the Radon transform is applied here. The
Radon transform is an integration along lines in 2D and an integration over planes in 3D. As seen from Fig.
2, the theorem says that the integrals of the data along lines in the detector plane are proportional to the
second derivative of the corresponding plane integrals of the object. Since the formula for the inverse 3D Radon
transform is known, the theorem can be directly used to find the object function.

6. RECONSTRUCTION ALGORITHMS

Using the fundamental theorem, a reconstruction algorithm can be derived. Indeed, the object function can be
found from equation (7) if the 3D Radon transform is inverted. This gives us the formula

f(x1, x2, x3) =
1

4π2d

∫ π

0

sinωdω

∫ π

0

dθ ĝθ(s′, ω). (8)

Inversion formula (8) suggests that a 2D Radon transform in the detector plane has to be computed for each
projection gθ(x, y). The result is then back-projected into the 3D space by using the backprojection operator
of the 3D inverse Radon transform. Applying the full 2D Radon transform to each projection is a lengthy
computational task; a more practical FBP reconstruction algorithm could be obtained if Eq. (8) was simplified



Figure 4. Reconstruction of the mixed phase and amplitude object by the suggested algorithm. Two detector positions:
in the contact print plane and in the near field of the Fresnel region are required.

by calculating the integral over angle ω. This result was first obtained in [6]. The algorithm is reduced to a
familiar FBP algorithm with the filter function q(x, y) = |y|/(x2 + y2):

f(x1, x2, x3) =
1

4π2d

∫ π

0

dθ q ∗ ∗gθ, (9)

where following the convolution arguments x and y of function q ∗ ∗gθ are replaced by x = x1 cos θ + x2 sin θ and
y = x3, respectively. Eq. (9) gives us an algorithm that is similar to the FBP algorithm of conventional CT (see
Eq. (5)). The major difference is that the filtering operation in phase-contrast CT is done in two dimensions.
The filter can be implemented in the Fourier domain:

Q(ξ, η) =
|ξ|

ξ2 + η2
, (10)

where ξ and η are the spatial frequencies.

7. MIXED PHASE AND AMPLITUDE OBJECTS

The use of the approach for mixed phase and amplitude objects is straightforward, at least theoretically. Indeed,
since I0

θ (x, y) is measured in the contact print plane, it should contain information of absorption contrast only
and therefore the absorption-contrast image is canceled by division in Eq. (6). In practical implementation this
method may require some additional processing of the data I0

θ (x, y) that can be noisy and of insufficient contrast.
Note that reconstruction of the mixed phase and amplitude objects will require measurements in two planes,
which are the contact print plane and the plane at the distance d from the object. In the case of a purely phase
object, I0

θ (x, y) = Ii, where Ii is the intensity of the incident beam, so that only a measurement in a single plane
in the near field is needed (compare Figs. 3 and 4).

8. STABILITY

As was pointed out already in [6,7], Q(ξ, η) is a low-pass filter so that the FBP algorithm given by Eqs. (9),(10)
is stable to the high-frequency noise. This is a special property of phase-contrast reconstruction. Here we have
a situation where the reconstruction algorithm does not need to be stabilized at the high frequencies, which is
opposite to the situation in conventional CT. At the same time, the instability of the inverse problem appears



Figure 5. Quantitative phase-contrast reconstruction of the experimental data of the polyethylene tube with polymer
fibers. (A data set is shown on the left, a slice from the 3D reconstruction is on the right). The materials with different
index of refraction are clearly distinguishable in the reconstructed image.

here in the other way. Note that convolution integral in Eq. (9) is understood in the sense of the Cauchy principal
value, since its kernel q(x, y) has a singularity at the origin. This singularity is preserved in the frequency domain,
where we also have the singularity at the origin. The singularity problem can be dealt with using a fine sampling
in the Fourier domain while setting Q(ξ, η) = 0 for ξ = 0, η = 0; in this way the filter allows us to reconstruct the
frequencies that are as close to the zero frequencies as possible. A more serious problem is a strong amplification
of the low frequencies by the filter function Q(ξ, η). The amplification of the low frequencies may lead to the
instability if the data contain a low-frequency noise. A simple way to stabilize the behavior of the filter at the
low frequencies is to add a regularization parameter to the denominator of Q(ξ, η), which gives us

Qα(ξ, η) =
|ξ|

ξ2 + η2 + α
, (11)

where α > 0 is a sufficiently small regularization parameter. The use of Qα(ξ, η) makes an approximation to the
exact filter, so that the reconstruction is never exact at the low spatial frequencies. This may be unsatisfactory
for homogeneous objects, but may work well for the objects with a fine structure. Another problem is the choice
of the regularization parameter. According to the author’s experience, the FBP algorithm is very sensitive to
small changes in parameter α, which requires a special procedure of selecting this parameter for each particular
object. Since the stability of the x-ray beams and the presence of absorption remain the main practical issues,
the problem of stabilizing the algorithms is one of the most important in implementation of fast FBP algorithms.

As an illustration of the practical applicability of the approach, an experimental data set has been processed.
The phase-contrast data were provided by courtesy of A. Groso and M. Stampanoni (Swiss Light Source).
Parameters of the data were: d = 15cm, E=13.5 keV, pixel size 1.75 µm. The data have been reconstructed
by the suggested algorithm with the regularized filter function. The results are shown in Fig. 5. Here we can
see that the algorithm allows us to reconstruct the quantitative image of the object; the materials with different
index of refraction are clearly distinguishable.

9. DISCUSSION

A mathematical theory of quantitative phase-contrast computed tomography is presented. A corner stone of
this theory is a fundamental theorem that establishes a relation between the 3D Radon transform of the object
function and the 2D Radon transform of the phase-contrast projection. The theorem shows a direct relationship
between the measured intensity and the index of refraction of the object. The approach requires no phase
retrieval and a phase object can be reconstructed using a single detector position in the near field of the Fresnel
region. The reconstruction algorithm is derived in the form of filtered backprojection (FBP), which is the fast
reconstruction algorithm. The FBP algorithm can be implemented in the Fourier domain using the fast Fourier



transform and is as simple as the conventional FBP algorithm. A family of related algorithms can be obtained
by modifying the filter function in order to provide the solution with the required properties.

Computer simulations showed promising results both for phase and mixed phase and amplitude objects.
A thorough numerical analysis of the reconstruction problem and a series of computer experiments have been
done by the author in [7]; we refer to [7] for all necessary numerical illustration of the theory. An independent
evaluation of the suggested algorithm was done by Anastasio et al [8]. Groso et al [9] have pointed out the
problem of instability of the algorithm to the low frequency noise in the data. Their conjecture was that the real
samples are never purely phase objects and therefore some absorption is always present, which can jeopardize the
behavior of the reconstruction algorithm at the low spatial frequencies. They have stabilized the reconstruction
with respect to the low frequency noise by using a regularized filter function as of Eq. (11) and provided an
heuristic procedure for finding the regularization parameter [10]. Gureyev et al suggested a more theoretical
approach for selecting the regularization parameter for the case of proportionality of the amplitude and phase
objects [11]. A further work is needed to generalize the FBP algorithms for objects with arbitrary absorption.
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